Reetta Sartoneva, Kaarlo Paakinaho, Markus Hannula, Kirsi Kuismanen, Heini Huhtala, Jari Hyttinen, Susanna Miettinen
{"title":"抗坏血酸2-磷酸释放超临界泡沫多孔聚-L-丙交酯-Co-ε-己内酯支架增强人阴道基质细胞胶原蛋白的产生:阴道组织工程的新途径。","authors":"Reetta Sartoneva, Kaarlo Paakinaho, Markus Hannula, Kirsi Kuismanen, Heini Huhtala, Jari Hyttinen, Susanna Miettinen","doi":"10.1007/s13770-023-00603-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects.</p><p><strong>Methods: </strong>Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCL<sub>A2P</sub>) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCL<sub>A2P</sub> was compared to that on scPLCL without A2P on d 14.</p><p><strong>Results: </strong>Both ECs and SCs maintained their viability on the scPLCL<sub>A2P</sub> scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCL<sub>A2P</sub> scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results.</p><p><strong>Conclusion: </strong>This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCL<sub>A2P</sub> has potential as a scaffold for vaginal tissue engineering.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"81-96"},"PeriodicalIF":4.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764701/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ascorbic Acid 2-Phosphate Releasing Supercritically Foamed Porous Poly-L-Lactide-Co-ε-Caprolactone Scaffold Enhances the Collagen Production of Human Vaginal Stromal Cells: A New Approach for Vaginal Tissue Engineering.\",\"authors\":\"Reetta Sartoneva, Kaarlo Paakinaho, Markus Hannula, Kirsi Kuismanen, Heini Huhtala, Jari Hyttinen, Susanna Miettinen\",\"doi\":\"10.1007/s13770-023-00603-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects.</p><p><strong>Methods: </strong>Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCL<sub>A2P</sub>) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCL<sub>A2P</sub> was compared to that on scPLCL without A2P on d 14.</p><p><strong>Results: </strong>Both ECs and SCs maintained their viability on the scPLCL<sub>A2P</sub> scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCL<sub>A2P</sub> scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results.</p><p><strong>Conclusion: </strong>This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCL<sub>A2P</sub> has potential as a scaffold for vaginal tissue engineering.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"81-96\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-023-00603-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-023-00603-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Ascorbic Acid 2-Phosphate Releasing Supercritically Foamed Porous Poly-L-Lactide-Co-ε-Caprolactone Scaffold Enhances the Collagen Production of Human Vaginal Stromal Cells: A New Approach for Vaginal Tissue Engineering.
Background: The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects.
Methods: Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCLA2P) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCLA2P was compared to that on scPLCL without A2P on d 14.
Results: Both ECs and SCs maintained their viability on the scPLCLA2P scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCLA2P scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results.
Conclusion: This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCLA2P has potential as a scaffold for vaginal tissue engineering.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.