解开哺乳动物系统性多病的潜在机制。

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2023-11-03 DOI:10.1111/mec.17193
Elizabeth K. Mallott
{"title":"解开哺乳动物系统性多病的潜在机制。","authors":"Elizabeth K. Mallott","doi":"10.1111/mec.17193","DOIUrl":null,"url":null,"abstract":"<p>Mammalian gut microbial communities are frequently found to be host-specific—microbial community compositions are more similar within than between host species—and some individual microbial taxa consistently associate with a single or small set of host species. The ecoevolutionary dynamics that result in this pattern of phylosymbiosis or host specificity have been proposed, but robust tests of the mechanisms driving these relationships are lacking. In this issue of <i>Molecular Ecology</i>, Mazel et al. (2023) combine large amplicon sequencing data sets with bacterial phenotypic traits to test whether microbial dispersal patterns contribute to the host specificity of the gut microbiome. They find that both transmission mode and oxygen tolerance are predictive of how specialized a microbe is. Horizontally transmitted, oxygen-tolerant microbes are more likely to be generalists, and vertically transmitted anaerobes are more likely to be limited to a few host species. This creative use of publicly available data provides a roadmap for testing hypotheses about the mechanisms underlying phylosymbiosis.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disentangling the mechanisms underlying phylosymbiosis in mammals\",\"authors\":\"Elizabeth K. Mallott\",\"doi\":\"10.1111/mec.17193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mammalian gut microbial communities are frequently found to be host-specific—microbial community compositions are more similar within than between host species—and some individual microbial taxa consistently associate with a single or small set of host species. The ecoevolutionary dynamics that result in this pattern of phylosymbiosis or host specificity have been proposed, but robust tests of the mechanisms driving these relationships are lacking. In this issue of <i>Molecular Ecology</i>, Mazel et al. (2023) combine large amplicon sequencing data sets with bacterial phenotypic traits to test whether microbial dispersal patterns contribute to the host specificity of the gut microbiome. They find that both transmission mode and oxygen tolerance are predictive of how specialized a microbe is. Horizontally transmitted, oxygen-tolerant microbes are more likely to be generalists, and vertically transmitted anaerobes are more likely to be limited to a few host species. This creative use of publicly available data provides a roadmap for testing hypotheses about the mechanisms underlying phylosymbiosis.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17193\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17193","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物肠道微生物群落经常被发现是宿主特异性的微生物群落组成在宿主物种内部比在宿主物种之间更相似,并且一些个体微生物类群始终与单个或小组宿主物种相关联。已经提出了导致这种系统性疾病模式或宿主特异性的生态进化动力学,但缺乏对驱动这些关系的机制的有力测试。在本期《分子生态学》杂志上,Mazel等人。(2023)将大型扩增子测序数据集与细菌表型特征相结合,以测试微生物扩散模式是否有助于肠道微生物组的宿主特异性。他们发现,传播模式和耐氧性都可以预测微生物的专业性。水平传播的耐氧微生物更有可能是多面手,而垂直传播的厌氧菌更有可能仅限于少数宿主物种。这种对公开可用数据的创造性使用为检验关于系统性多病潜在机制的假设提供了一个路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disentangling the mechanisms underlying phylosymbiosis in mammals

Mammalian gut microbial communities are frequently found to be host-specific—microbial community compositions are more similar within than between host species—and some individual microbial taxa consistently associate with a single or small set of host species. The ecoevolutionary dynamics that result in this pattern of phylosymbiosis or host specificity have been proposed, but robust tests of the mechanisms driving these relationships are lacking. In this issue of Molecular Ecology, Mazel et al. (2023) combine large amplicon sequencing data sets with bacterial phenotypic traits to test whether microbial dispersal patterns contribute to the host specificity of the gut microbiome. They find that both transmission mode and oxygen tolerance are predictive of how specialized a microbe is. Horizontally transmitted, oxygen-tolerant microbes are more likely to be generalists, and vertically transmitted anaerobes are more likely to be limited to a few host species. This creative use of publicly available data provides a roadmap for testing hypotheses about the mechanisms underlying phylosymbiosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
The Genomic Signature and Transcriptional Response of Metal Tolerance in Brown Trout Inhabiting Metal-Polluted Rivers. Can Transcriptomics Elucidate the Role of Regulation in Invasion Success? Genomic Architecture Underlying the Striking Colour Variation in the Presence of Gene Flow for the Guinan Toad-Headed Lizard. A Natural Hybrid Zone of Swordtails Reveals Molecular Insights Into the Adaptive Genomic Basis of Thermal Tolerance. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1