{"title":"一氧化氮在缺氧/复氧条件下对红细胞结构和功能组织的贡献。","authors":"N V Akulich, V V Zinchuk","doi":"10.18097/PBMC20236905315","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia is accompanied by changes in metabolism and cell functioning. Erythrocyte hemoglobin can be involved in adaptation to hypoxia by acting as an oxygen sensor, providing a link between oxygen content and blood circulation. The mechanisms providing this function have not been completely established. The purpose of this study was to evaluate the effect of the gasotransmitter nitric oxide on the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation. NO participated in adaptive reactions under hypoxia/reoxygenation conditions by changing hemoglobin conformation, followed by changes in hemoprotein spectral characteristics and hemoglobin affinity to oxygen together with increasing anisocytosis, volume and cell surface. The increase in intracellular NO concentrations under hypoxic conditions was provided by extracellular fluid nitrites. Molsidomine (a NO donor) induced a higher NO increase without involvement of the nitrite reductase mechanism, it caused an increase in the average erythrocyte volume, anisocytosis, and an increase in the cell surface.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation.\",\"authors\":\"N V Akulich, V V Zinchuk\",\"doi\":\"10.18097/PBMC20236905315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia is accompanied by changes in metabolism and cell functioning. Erythrocyte hemoglobin can be involved in adaptation to hypoxia by acting as an oxygen sensor, providing a link between oxygen content and blood circulation. The mechanisms providing this function have not been completely established. The purpose of this study was to evaluate the effect of the gasotransmitter nitric oxide on the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation. NO participated in adaptive reactions under hypoxia/reoxygenation conditions by changing hemoglobin conformation, followed by changes in hemoprotein spectral characteristics and hemoglobin affinity to oxygen together with increasing anisocytosis, volume and cell surface. The increase in intracellular NO concentrations under hypoxic conditions was provided by extracellular fluid nitrites. Molsidomine (a NO donor) induced a higher NO increase without involvement of the nitrite reductase mechanism, it caused an increase in the average erythrocyte volume, anisocytosis, and an increase in the cell surface.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20236905315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20236905315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation.
Hypoxia is accompanied by changes in metabolism and cell functioning. Erythrocyte hemoglobin can be involved in adaptation to hypoxia by acting as an oxygen sensor, providing a link between oxygen content and blood circulation. The mechanisms providing this function have not been completely established. The purpose of this study was to evaluate the effect of the gasotransmitter nitric oxide on the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation. NO participated in adaptive reactions under hypoxia/reoxygenation conditions by changing hemoglobin conformation, followed by changes in hemoprotein spectral characteristics and hemoglobin affinity to oxygen together with increasing anisocytosis, volume and cell surface. The increase in intracellular NO concentrations under hypoxic conditions was provided by extracellular fluid nitrites. Molsidomine (a NO donor) induced a higher NO increase without involvement of the nitrite reductase mechanism, it caused an increase in the average erythrocyte volume, anisocytosis, and an increase in the cell surface.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).