{"title":"AT-04磁场照射神经调控通过下行疼痛调节系统和阿片类镇痛改善神经性疼痛大鼠模型中的高痛症。","authors":"Tatsuro Kohno, Kaori Takaki, Kaori Kishita, Kazunori Mitsutake, Nozomu Tofuku, Iwao Kishita","doi":"10.1007/s10571-023-01430-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromodulation through magnetic fields irradiation with ait® (AT-04), a device that irradiates a mixed alternating magnetic fields (2 kHz and 83.3 MHz), has been shown to have high efficacy for fibromyalgia and low back pain in our previous clinical trials. The aim of this study was to elucidate the underlying analgesic mechanism of the AT-04 using the partial sciatic nerve ligation (PSL) model as an animal model of neuropathic pain. AT-04 was applied to PSL model rats with hyperalgesia and its pain-improving effect was verified by examining mechanical allodynia using the von Frey method. The results demonstrated a significant improvement in hyperalgesia in PSL model rats. We also examined the involvement of descending pain modulatory systems in the analgesic effects of AT-04 using antagonism by serotonin and noradrenergic receptor antagonists. These antagonists significantly reduced the analgesic effect of AT-04 on pain in PSL model rats by approximately 50%. We also measured the amount of serotonin and noradrenaline in the spinal fluid of PSL model rats using microdialysis during AT-04 treatment. Both monoamines were significantly increased by magnetic fields irradiation with AT-04. Furthermore, we evaluated the involvement of opioid analgesia in the analgesic effects of AT-04 using naloxone, the main antagonist of the opioid receptor, and found that it significantly antagonized the effects by approximately 60%. Therefore, the analgesic effects of AT-04 in PSL model rats involve both the endogenous pain modulation systems, including the descending pain modulatory system and the opioid analgesic system.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":" ","pages":"4345-4362"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuromodulation Through Magnetic Fields Irradiation with AT-04 Improves Hyperalgesia in a Rat Model of Neuropathic Pain via Descending Pain Modulatory Systems and Opioid Analgesia.\",\"authors\":\"Tatsuro Kohno, Kaori Takaki, Kaori Kishita, Kazunori Mitsutake, Nozomu Tofuku, Iwao Kishita\",\"doi\":\"10.1007/s10571-023-01430-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuromodulation through magnetic fields irradiation with ait® (AT-04), a device that irradiates a mixed alternating magnetic fields (2 kHz and 83.3 MHz), has been shown to have high efficacy for fibromyalgia and low back pain in our previous clinical trials. The aim of this study was to elucidate the underlying analgesic mechanism of the AT-04 using the partial sciatic nerve ligation (PSL) model as an animal model of neuropathic pain. AT-04 was applied to PSL model rats with hyperalgesia and its pain-improving effect was verified by examining mechanical allodynia using the von Frey method. The results demonstrated a significant improvement in hyperalgesia in PSL model rats. We also examined the involvement of descending pain modulatory systems in the analgesic effects of AT-04 using antagonism by serotonin and noradrenergic receptor antagonists. These antagonists significantly reduced the analgesic effect of AT-04 on pain in PSL model rats by approximately 50%. We also measured the amount of serotonin and noradrenaline in the spinal fluid of PSL model rats using microdialysis during AT-04 treatment. Both monoamines were significantly increased by magnetic fields irradiation with AT-04. Furthermore, we evaluated the involvement of opioid analgesia in the analgesic effects of AT-04 using naloxone, the main antagonist of the opioid receptor, and found that it significantly antagonized the effects by approximately 60%. Therefore, the analgesic effects of AT-04 in PSL model rats involve both the endogenous pain modulation systems, including the descending pain modulatory system and the opioid analgesic system.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"4345-4362\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-023-01430-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-023-01430-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Neuromodulation Through Magnetic Fields Irradiation with AT-04 Improves Hyperalgesia in a Rat Model of Neuropathic Pain via Descending Pain Modulatory Systems and Opioid Analgesia.
Neuromodulation through magnetic fields irradiation with ait® (AT-04), a device that irradiates a mixed alternating magnetic fields (2 kHz and 83.3 MHz), has been shown to have high efficacy for fibromyalgia and low back pain in our previous clinical trials. The aim of this study was to elucidate the underlying analgesic mechanism of the AT-04 using the partial sciatic nerve ligation (PSL) model as an animal model of neuropathic pain. AT-04 was applied to PSL model rats with hyperalgesia and its pain-improving effect was verified by examining mechanical allodynia using the von Frey method. The results demonstrated a significant improvement in hyperalgesia in PSL model rats. We also examined the involvement of descending pain modulatory systems in the analgesic effects of AT-04 using antagonism by serotonin and noradrenergic receptor antagonists. These antagonists significantly reduced the analgesic effect of AT-04 on pain in PSL model rats by approximately 50%. We also measured the amount of serotonin and noradrenaline in the spinal fluid of PSL model rats using microdialysis during AT-04 treatment. Both monoamines were significantly increased by magnetic fields irradiation with AT-04. Furthermore, we evaluated the involvement of opioid analgesia in the analgesic effects of AT-04 using naloxone, the main antagonist of the opioid receptor, and found that it significantly antagonized the effects by approximately 60%. Therefore, the analgesic effects of AT-04 in PSL model rats involve both the endogenous pain modulation systems, including the descending pain modulatory system and the opioid analgesic system.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.