Jingtao Hu, Bin Xiao, Hu Jin, Jingcan Duan, Siwei Wang, Zhao Lv, Siqi Wang, Xinwang Liu, En Zhu
{"title":"SAMCL:用于图异常检测的子图对齐多视图对比学习。","authors":"Jingtao Hu, Bin Xiao, Hu Jin, Jingcan Duan, Siwei Wang, Zhao Lv, Siqi Wang, Xinwang Liu, En Zhu","doi":"10.1109/TNNLS.2023.3323274","DOIUrl":null,"url":null,"abstract":"<p><p>Graph anomaly detection (GAD) has gained increasing attention in various attribute graph applications, i.e., social communication and financial fraud transaction networks. Recently, graph contrastive learning (GCL)-based methods have been widely adopted as the mainstream for GAD with remarkable success. However, existing GCL strategies in GAD mainly focus on node-node and node-subgraph contrast and fail to explore subgraph-subgraph level comparison. Furthermore, the different sizes or component node indices of the sampled subgraph pairs may cause the \"nonaligned\" issue, making it difficult to accurately measure the similarity of subgraph pairs. In this article, we propose a novel subgraph-aligned multiview contrastive approach for graph anomaly detection, named SAMCL, which fills the subgraph-subgraph contrastive-level blank for GAD tasks. Specifically, we first generate the multiview augmented subgraphs by capturing different neighbors of target nodes forming contrasting subgraph pairs. Then, to fulfill the nonaligned subgraph pair contrast, we propose a subgraph-aligned strategy that estimates similarities with the Earth mover's distance (EMD) of both considering the node embedding distributions and typology awareness. With the newly established similarity measure for subgraphs, we conduct the interview subgraph-aligned contrastive learning module to better detect changes for nodes with different local subgraphs. Moreover, we conduct intraview node-subgraph contrastive learning to supplement richer information on abnormalities. Finally, we also employ the node reconstruction task for the masked subgraph to measure the local change of the target node. Finally, the anomaly score for each node is jointly calculated by these three modules. Extensive experiments conducted on benchmark datasets verify the effectiveness of our approach compared to existing state-of-the-art (SOTA) methods with significant performance gains (up to 6.36% improvement on ACM). Our code can be verified at https://github.com/hujingtao/SAMCL.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAMCL: Subgraph-Aligned Multiview Contrastive Learning for Graph Anomaly Detection.\",\"authors\":\"Jingtao Hu, Bin Xiao, Hu Jin, Jingcan Duan, Siwei Wang, Zhao Lv, Siqi Wang, Xinwang Liu, En Zhu\",\"doi\":\"10.1109/TNNLS.2023.3323274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graph anomaly detection (GAD) has gained increasing attention in various attribute graph applications, i.e., social communication and financial fraud transaction networks. Recently, graph contrastive learning (GCL)-based methods have been widely adopted as the mainstream for GAD with remarkable success. However, existing GCL strategies in GAD mainly focus on node-node and node-subgraph contrast and fail to explore subgraph-subgraph level comparison. Furthermore, the different sizes or component node indices of the sampled subgraph pairs may cause the \\\"nonaligned\\\" issue, making it difficult to accurately measure the similarity of subgraph pairs. In this article, we propose a novel subgraph-aligned multiview contrastive approach for graph anomaly detection, named SAMCL, which fills the subgraph-subgraph contrastive-level blank for GAD tasks. Specifically, we first generate the multiview augmented subgraphs by capturing different neighbors of target nodes forming contrasting subgraph pairs. Then, to fulfill the nonaligned subgraph pair contrast, we propose a subgraph-aligned strategy that estimates similarities with the Earth mover's distance (EMD) of both considering the node embedding distributions and typology awareness. With the newly established similarity measure for subgraphs, we conduct the interview subgraph-aligned contrastive learning module to better detect changes for nodes with different local subgraphs. Moreover, we conduct intraview node-subgraph contrastive learning to supplement richer information on abnormalities. Finally, we also employ the node reconstruction task for the masked subgraph to measure the local change of the target node. Finally, the anomaly score for each node is jointly calculated by these three modules. Extensive experiments conducted on benchmark datasets verify the effectiveness of our approach compared to existing state-of-the-art (SOTA) methods with significant performance gains (up to 6.36% improvement on ACM). Our code can be verified at https://github.com/hujingtao/SAMCL.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3323274\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3323274","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
SAMCL: Subgraph-Aligned Multiview Contrastive Learning for Graph Anomaly Detection.
Graph anomaly detection (GAD) has gained increasing attention in various attribute graph applications, i.e., social communication and financial fraud transaction networks. Recently, graph contrastive learning (GCL)-based methods have been widely adopted as the mainstream for GAD with remarkable success. However, existing GCL strategies in GAD mainly focus on node-node and node-subgraph contrast and fail to explore subgraph-subgraph level comparison. Furthermore, the different sizes or component node indices of the sampled subgraph pairs may cause the "nonaligned" issue, making it difficult to accurately measure the similarity of subgraph pairs. In this article, we propose a novel subgraph-aligned multiview contrastive approach for graph anomaly detection, named SAMCL, which fills the subgraph-subgraph contrastive-level blank for GAD tasks. Specifically, we first generate the multiview augmented subgraphs by capturing different neighbors of target nodes forming contrasting subgraph pairs. Then, to fulfill the nonaligned subgraph pair contrast, we propose a subgraph-aligned strategy that estimates similarities with the Earth mover's distance (EMD) of both considering the node embedding distributions and typology awareness. With the newly established similarity measure for subgraphs, we conduct the interview subgraph-aligned contrastive learning module to better detect changes for nodes with different local subgraphs. Moreover, we conduct intraview node-subgraph contrastive learning to supplement richer information on abnormalities. Finally, we also employ the node reconstruction task for the masked subgraph to measure the local change of the target node. Finally, the anomaly score for each node is jointly calculated by these three modules. Extensive experiments conducted on benchmark datasets verify the effectiveness of our approach compared to existing state-of-the-art (SOTA) methods with significant performance gains (up to 6.36% improvement on ACM). Our code can be verified at https://github.com/hujingtao/SAMCL.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.