Corey M. Efaw, Qisheng Wu, Ningshengjie Gao, Yugang Zhang, Haoyu Zhu, Kevin Gering, Michael F. Hurley, Hui Xiong, Enyuan Hu, Xia Cao, Wu Xu, Ji-Guang Zhang, Eric J. Dufek, Jie Xiao, Xiao-Qing Yang, Jun Liu, Yue Qi, Bin Li
{"title":"局部的高浓度电解质通过胶束状结构得到更多的局部。","authors":"Corey M. Efaw, Qisheng Wu, Ningshengjie Gao, Yugang Zhang, Haoyu Zhu, Kevin Gering, Michael F. Hurley, Hui Xiong, Enyuan Hu, Xia Cao, Wu Xu, Ji-Guang Zhang, Eric J. Dufek, Jie Xiao, Xiao-Qing Yang, Jun Liu, Yue Qi, Bin Li","doi":"10.1038/s41563-023-01700-3","DOIUrl":null,"url":null,"abstract":"Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt–solvent clusters that extends the salt solubility. These intermingling miscibility effects have temperature dependencies, wherein a typical localized high-concentration electrolyte peaks in localized cluster salt concentration near room temperature and is used to form a stable solid–electrolyte interphase on a Li metal anode. These findings serve as a guide to predicting a stable ternary phase diagram and connecting the electrolyte microstructure with electrolyte formulation and formation protocols of solid–electrolyte interphases for enhanced battery cyclability. Liquid electrolytes in batteries are considered to be macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures. A micelle-like structure in a localized high-concentration electrolyte for which the solvent acts as a surfactant is reported.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"22 12","pages":"1531-1539"},"PeriodicalIF":37.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized high-concentration electrolytes get more localized through micelle-like structures\",\"authors\":\"Corey M. Efaw, Qisheng Wu, Ningshengjie Gao, Yugang Zhang, Haoyu Zhu, Kevin Gering, Michael F. Hurley, Hui Xiong, Enyuan Hu, Xia Cao, Wu Xu, Ji-Guang Zhang, Eric J. Dufek, Jie Xiao, Xiao-Qing Yang, Jun Liu, Yue Qi, Bin Li\",\"doi\":\"10.1038/s41563-023-01700-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt–solvent clusters that extends the salt solubility. These intermingling miscibility effects have temperature dependencies, wherein a typical localized high-concentration electrolyte peaks in localized cluster salt concentration near room temperature and is used to form a stable solid–electrolyte interphase on a Li metal anode. These findings serve as a guide to predicting a stable ternary phase diagram and connecting the electrolyte microstructure with electrolyte formulation and formation protocols of solid–electrolyte interphases for enhanced battery cyclability. Liquid electrolytes in batteries are considered to be macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures. A micelle-like structure in a localized high-concentration electrolyte for which the solvent acts as a surfactant is reported.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"22 12\",\"pages\":\"1531-1539\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-023-01700-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-023-01700-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Localized high-concentration electrolytes get more localized through micelle-like structures
Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt–solvent clusters that extends the salt solubility. These intermingling miscibility effects have temperature dependencies, wherein a typical localized high-concentration electrolyte peaks in localized cluster salt concentration near room temperature and is used to form a stable solid–electrolyte interphase on a Li metal anode. These findings serve as a guide to predicting a stable ternary phase diagram and connecting the electrolyte microstructure with electrolyte formulation and formation protocols of solid–electrolyte interphases for enhanced battery cyclability. Liquid electrolytes in batteries are considered to be macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures. A micelle-like structure in a localized high-concentration electrolyte for which the solvent acts as a surfactant is reported.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.