神经发育障碍和癌症网络共享路径,但在机制、信号强度和结果方面有所不同。

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY NPJ Genomic Medicine Pub Date : 2023-11-04 DOI:10.1038/s41525-023-00377-6
Bengi Ruken Yavuz, M Kaan Arici, Habibe Cansu Demirel, Chung-Jung Tsai, Hyunbum Jang, Ruth Nussinov, Nurcan Tuncbag
{"title":"神经发育障碍和癌症网络共享路径,但在机制、信号强度和结果方面有所不同。","authors":"Bengi Ruken Yavuz, M Kaan Arici, Habibe Cansu Demirel, Chung-Jung Tsai, Hyunbum Jang, Ruth Nussinov, Nurcan Tuncbag","doi":"10.1038/s41525-023-00377-6","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"8 1","pages":"37"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625621/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome.\",\"authors\":\"Bengi Ruken Yavuz, M Kaan Arici, Habibe Cansu Demirel, Chung-Jung Tsai, Hyunbum Jang, Ruth Nussinov, Nurcan Tuncbag\",\"doi\":\"10.1038/s41525-023-00377-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":\"8 1\",\"pages\":\"37\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625621/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-023-00377-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-023-00377-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

流行病学研究表明,患有神经发育障碍(NDD)的人更容易患上某些类型的癌症。然而,值得注意的是,病例统计可能会受到患有NDD(如智力障碍、自闭症和精神分裂症)的个体中癌症晚期发现的影响,这可能会使数字产生偏差。至于NDD相关突变,在大多数情况下,它们是种系突变,而癌症突变是散发的,在生命中出现。然而,体细胞嵌合体可以刺激NDD,与癌症相关的突变可以是种系。NDD和癌症共享蛋白质、途径和突变。在这里,我们要问(i)它们到底有哪些共同特征,以及(ii)尽管它们有共性,但它们在临床结果上有何不同。为了解决这些问题,我们采用了一个统计框架,然后进行网络分析。我们对自闭症谱系障碍(ASD)和癌症的突变、重建的疾病特异性网络、途径、转录组水平和图谱的彻底探索表明,信号强度是关键因素:强信号促进癌症的细胞增殖,弱(中等)信号影响自闭症谱系疾病谱系障碍的分化。因此,我们认为信号强度,而不是激活突变,可以决定临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome.

Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
期刊最新文献
Germline sequence variation in cancer genes in Rwandan breast and prostate cancer cases. Common protein-altering variant in GFAP is associated with white matter lesions in the older Japanese population. Benchmarking nanopore sequencing and rapid genomics feasibility: validation at a quaternary hospital in New Zealand. Coding and non-coding variants in the ciliopathy gene CFAP410 cause early-onset non-syndromic retinal degeneration. Biallelic loss-of-function variants in GON4L cause microcephaly and brain structure abnormalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1