{"title":"使用深度卷积神经网络使用新指数对CT图像的分辨率特性进行基于任务的评估。","authors":"Aiko Hayashi, Ryohei Fukui, Shogo Kamioka, Kazushi Yokomachi, Chikako Fujioka, Eiji Nishimaru, Masao Kiguchi, Junji Shiraishi","doi":"10.1007/s12194-023-00751-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we propose a method for obtaining a new index to evaluate the resolution properties of computed tomography (CT) images in a task-based manner. This method applies a deep convolutional neural network (DCNN) machine learning system trained on CT images with known modulation transfer function (MTF) values to output an index representing the resolution properties of the input CT image [i.e., the resolution property index (RPI)]. Sample CT images were obtained for training and testing of the DCNN by scanning the American Radiological Society phantom. Subsequently, the images were reconstructed using a filtered back projection algorithm with different reconstruction kernels. The circular edge method was used to measure the MTF values, which were used as teacher information for the DCNN. The resolution properties of the sample CT images used to train the DCNN were created by intentionally varying the field of view (FOV). Four FOV settings were considered. The results of adapting this method to the filtered back projection (FBP) and hybrid iterative reconstruction (h-IR) images indicated highly correlated values with the MTF<sub>10%</sub> in both cases. Furthermore, we demonstrated that the RPIs could be estimated in the same manner under the same imaging conditions and reconstruction kernels, even for other CT systems, where the DCNN was trained on CT systems produced by the same manufacturer. In conclusion, the RPI, which is a new index that represents the resolution property using the proposed method, can be used to evaluate the resolution of a CT system in a task-based manner.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"83-92"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task-based assessment of resolution properties of CT images with a new index using deep convolutional neural network.\",\"authors\":\"Aiko Hayashi, Ryohei Fukui, Shogo Kamioka, Kazushi Yokomachi, Chikako Fujioka, Eiji Nishimaru, Masao Kiguchi, Junji Shiraishi\",\"doi\":\"10.1007/s12194-023-00751-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we propose a method for obtaining a new index to evaluate the resolution properties of computed tomography (CT) images in a task-based manner. This method applies a deep convolutional neural network (DCNN) machine learning system trained on CT images with known modulation transfer function (MTF) values to output an index representing the resolution properties of the input CT image [i.e., the resolution property index (RPI)]. Sample CT images were obtained for training and testing of the DCNN by scanning the American Radiological Society phantom. Subsequently, the images were reconstructed using a filtered back projection algorithm with different reconstruction kernels. The circular edge method was used to measure the MTF values, which were used as teacher information for the DCNN. The resolution properties of the sample CT images used to train the DCNN were created by intentionally varying the field of view (FOV). Four FOV settings were considered. The results of adapting this method to the filtered back projection (FBP) and hybrid iterative reconstruction (h-IR) images indicated highly correlated values with the MTF<sub>10%</sub> in both cases. Furthermore, we demonstrated that the RPIs could be estimated in the same manner under the same imaging conditions and reconstruction kernels, even for other CT systems, where the DCNN was trained on CT systems produced by the same manufacturer. In conclusion, the RPI, which is a new index that represents the resolution property using the proposed method, can be used to evaluate the resolution of a CT system in a task-based manner.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"83-92\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-023-00751-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00751-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Task-based assessment of resolution properties of CT images with a new index using deep convolutional neural network.
In this study, we propose a method for obtaining a new index to evaluate the resolution properties of computed tomography (CT) images in a task-based manner. This method applies a deep convolutional neural network (DCNN) machine learning system trained on CT images with known modulation transfer function (MTF) values to output an index representing the resolution properties of the input CT image [i.e., the resolution property index (RPI)]. Sample CT images were obtained for training and testing of the DCNN by scanning the American Radiological Society phantom. Subsequently, the images were reconstructed using a filtered back projection algorithm with different reconstruction kernels. The circular edge method was used to measure the MTF values, which were used as teacher information for the DCNN. The resolution properties of the sample CT images used to train the DCNN were created by intentionally varying the field of view (FOV). Four FOV settings were considered. The results of adapting this method to the filtered back projection (FBP) and hybrid iterative reconstruction (h-IR) images indicated highly correlated values with the MTF10% in both cases. Furthermore, we demonstrated that the RPIs could be estimated in the same manner under the same imaging conditions and reconstruction kernels, even for other CT systems, where the DCNN was trained on CT systems produced by the same manufacturer. In conclusion, the RPI, which is a new index that represents the resolution property using the proposed method, can be used to evaluate the resolution of a CT system in a task-based manner.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.