表达分析表明,DNMT3L仅在鼠科和蟋蟀科啮齿类动物的卵母细胞从头DNA甲基化中是必需的。

IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Epigenetics & Chromatin Pub Date : 2023-11-04 DOI:10.1186/s13072-023-00518-2
Lirik Behluli, Alyssa M Fontanilla, Laura Andessner-Angleitner, Nikolas Tolar, Julia M Molina, Lenka Gahurova
{"title":"表达分析表明,DNMT3L仅在鼠科和蟋蟀科啮齿类动物的卵母细胞从头DNA甲基化中是必需的。","authors":"Lirik Behluli, Alyssa M Fontanilla, Laura Andessner-Angleitner, Nikolas Tolar, Julia M Molina, Lenka Gahurova","doi":"10.1186/s13072-023-00518-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals.</p><p><strong>Results: </strong>We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species.</p><p><strong>Conclusions: </strong>The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"43"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625200/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression analysis suggests that DNMT3L is required for oocyte de novo DNA methylation only in Muridae and Cricetidae rodents.\",\"authors\":\"Lirik Behluli, Alyssa M Fontanilla, Laura Andessner-Angleitner, Nikolas Tolar, Julia M Molina, Lenka Gahurova\",\"doi\":\"10.1186/s13072-023-00518-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals.</p><p><strong>Results: </strong>We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species.</p><p><strong>Conclusions: </strong>The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"16 1\",\"pages\":\"43\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625200/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-023-00518-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-023-00518-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在哺乳动物早期发育过程中,DNA甲基化经历两波重编程,实现体细胞、卵母细胞和胚胎之间的转换。第一波从头开始的DNA甲基化发生在卵母细胞中。它的分子机制已经在小鼠(一种经典的哺乳动物模型)中进行了研究。目前的模型将DNA甲基转移酶3A(DNMT3A)及其辅因子DNMT3L描述为卵母细胞DNA甲基化的两个重要因素,其中任何一个的切除都会导致DNA甲基化几乎完全消除。然而,DNMT3L在人类卵母细胞中不表达,这表明在小鼠中发现的机制在哺乳动物中并不普遍。结果:我们分析了多种哺乳动物卵母细胞的可用RNA-seq数据集,包括几种啮齿动物的新数据集,发现Dnmt3l仅在小鼠、大鼠和金仓鼠的卵母细胞中表达,在豚鼠中表达水平较低。我们鉴定了一个由卵母细胞转录因子复合物识别的特异性启动子序列,该序列与强Dnmt3l活性相关,并证明它出现在啮齿类动物Eumuroida分支中,包括鼠科(小鼠、大鼠、沙鼠)和仓鼠科(仓鼠)。此外,在豚鼠中出现了一种进化上新颖的启动子,导致Dnmt3l表达较弱,可能没有功能相关性。因此,Dnmt3l仅在少数啮齿动物中表达,并因此在卵母细胞从头DNA甲基化中发挥作用,而不是一种重要的泛哺乳动物因子。与体细胞相比,在体细胞中,催化失活的DNMT3B与DNMT3A相互作用,形成异源四聚体,我们没有发现在测试物种的卵母细胞中表达这种失活的DNMT3B亚型的证据。结论:RNA-seq数据和基因组序列分析表明,DNMT3L可能仅在小鼠、大鼠、沙鼠和仓鼠的卵母细胞DNA甲基化过程中发挥作用。包括人类在内的大多数哺乳动物卵母细胞中控制DNA从头甲基化的机制是通过一种未知的机制发生的,与目前在小鼠中发现的模型不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expression analysis suggests that DNMT3L is required for oocyte de novo DNA methylation only in Muridae and Cricetidae rodents.

Background: During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals.

Results: We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species.

Conclusions: The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
期刊最新文献
VprBP regulates osteoclast differentiation via an epigenetic mechanism involving histone H2A phosphorylation. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages. H3.3K122A results in a neomorphic phenotype in mouse embryonic stem cells. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1