使用EMD自动选择IMF以对sEMG信号进行去噪。

IF 2 4区 医学 Q3 NEUROSCIENCES Journal of Electromyography and Kinesiology Pub Date : 2023-10-20 DOI:10.1016/j.jelekin.2023.102834
Pratap Kumar Koppolu, Krishnan Chemmangat
{"title":"使用EMD自动选择IMF以对sEMG信号进行去噪。","authors":"Pratap Kumar Koppolu,&nbsp;Krishnan Chemmangat","doi":"10.1016/j.jelekin.2023.102834","DOIUrl":null,"url":null,"abstract":"<div><p><span>Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. </span>Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"73 ","pages":"Article 102834"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic selection of IMFs to denoise the sEMG signals using EMD\",\"authors\":\"Pratap Kumar Koppolu,&nbsp;Krishnan Chemmangat\",\"doi\":\"10.1016/j.jelekin.2023.102834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. </span>Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.</p></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"73 \",\"pages\":\"Article 102834\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641123000937\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641123000937","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

表面肌电图(sEMG)信号是肌肉激活信号,在肌肉诊断、康复、假肢和语音等方面有应用。然而,已知它们会受到诸如电力线干扰(PLI)、运动伪像等噪声的影响,和互补EEMD(CEEMD)用于将EMG分解为一系列固有模式函数(IMF)。可以从所选择的IMF中获得去噪的EMG。使用统计方法来选择信号主导的IMF以重构去噪信号。在这项工作中,提出了一种从原始sEMG信号中自动分离噪声IMF的新方法。为此,在被称为部分EEMD(PEEMD)的EEMD筛选过程中,采用排列熵(PE),根据预设的PE阈值将噪声IMF从原始sEMG信号中分离出来。PEEMD根据预设的PE阈值将原始信号分解成各种模式,并且从所得的IMF重建去噪信号。PEEMD去噪程序应用于从八名受试者收集的实验sEMG数据,这些受试者包括六种不同的上肢运动类别。与EMD、EEMD和CEEMD相比,所提出的去噪程序实现了改进的去噪性能。另一种称为样本熵(SE)的测量方法也用于代替PE,用于自动筛选过程作为比较。信噪比(SNR)、均方根误差(RMSE)和重建误差(RE)参数用于评估去噪性能。八个受试者的平均结果表明,在实验收集的sEMG数据样本上,所提出的去噪程序在这些性能指标方面优于最先进的EMD技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic selection of IMFs to denoise the sEMG signals using EMD

Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
70
审稿时长
74 days
期刊介绍: Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.
期刊最新文献
Inter-session Reliability of Magnetic Nerve Stimulation and Within-Session comparison to Electrical Nerve Stimulation in Evaluating Neuromuscular Function of Knee Extensor Muscles. Effect of tasks on intramuscular regional differences in rectus femoris elasticity during isometric contraction: An ultrasound shear wave elastography study. Flexor hallucis longus and tibialis anterior: A synergistic relationship. The unprecedented progresses in neuromechanics over the past 50 years - In celebration of the 50th anniversary of the international society of biomechanics. Wavelet-based time-frequency intermuscular beta-band coherence decreases with age but increases after mental fatigue in ankle muscles during gait independent of age.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1