放射组学在核医学中的临床应用。

Nuklearmedizin. Nuclear medicine Pub Date : 2023-12-01 Epub Date: 2023-11-07 DOI:10.1055/a-2191-3271
Philipp Lohmann, Ralph Alexander Bundschuh, Isabelle Miederer, Felix M Mottaghy, Karl Josef Langen, Norbert Galldiks
{"title":"放射组学在核医学中的临床应用。","authors":"Philipp Lohmann, Ralph Alexander Bundschuh, Isabelle Miederer, Felix M Mottaghy, Karl Josef Langen, Norbert Galldiks","doi":"10.1055/a-2191-3271","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics is an emerging field of artificial intelligence that focuses on the extraction and analysis of quantitative features such as intensity, shape, texture and spatial relationships from medical images. These features, often imperceptible to the human eye, can reveal complex patterns and biological insights. They can also be combined with clinical data to create predictive models using machine learning to improve disease characterization in nuclear medicine. This review article examines the current state of radiomics in nuclear medicine and shows its potential to improve patient care. Selected clinical applications for diseases such as cancer, neurodegenerative diseases, cardiovascular problems and thyroid diseases are examined. The article concludes with a brief classification in terms of future perspectives and strategies for linking research findings to clinical practice.</p>","PeriodicalId":94161,"journal":{"name":"Nuklearmedizin. Nuclear medicine","volume":" ","pages":"354-360"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Applications of Radiomics in Nuclear Medicine.\",\"authors\":\"Philipp Lohmann, Ralph Alexander Bundschuh, Isabelle Miederer, Felix M Mottaghy, Karl Josef Langen, Norbert Galldiks\",\"doi\":\"10.1055/a-2191-3271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiomics is an emerging field of artificial intelligence that focuses on the extraction and analysis of quantitative features such as intensity, shape, texture and spatial relationships from medical images. These features, often imperceptible to the human eye, can reveal complex patterns and biological insights. They can also be combined with clinical data to create predictive models using machine learning to improve disease characterization in nuclear medicine. This review article examines the current state of radiomics in nuclear medicine and shows its potential to improve patient care. Selected clinical applications for diseases such as cancer, neurodegenerative diseases, cardiovascular problems and thyroid diseases are examined. The article concludes with a brief classification in terms of future perspectives and strategies for linking research findings to clinical practice.</p>\",\"PeriodicalId\":94161,\"journal\":{\"name\":\"Nuklearmedizin. Nuclear medicine\",\"volume\":\" \",\"pages\":\"354-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuklearmedizin. Nuclear medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2191-3271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin. Nuclear medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2191-3271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射组学是人工智能的一个新兴领域,专注于从医学图像中提取和分析定量特征,如强度、形状、纹理和空间关系。这些特征通常是人眼无法察觉的,可以揭示复杂的模式和生物学见解。它们还可以与临床数据相结合,使用机器学习创建预测模型,以改善核医学中的疾病特征。这篇综述文章探讨了核医学中放射组学的现状,并展示了其改善患者护理的潜力。研究了癌症、神经退行性疾病、心血管问题和甲状腺疾病等疾病的选定临床应用。文章最后对未来的前景和将研究结果与临床实践联系起来的策略进行了简要的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clinical Applications of Radiomics in Nuclear Medicine.

Radiomics is an emerging field of artificial intelligence that focuses on the extraction and analysis of quantitative features such as intensity, shape, texture and spatial relationships from medical images. These features, often imperceptible to the human eye, can reveal complex patterns and biological insights. They can also be combined with clinical data to create predictive models using machine learning to improve disease characterization in nuclear medicine. This review article examines the current state of radiomics in nuclear medicine and shows its potential to improve patient care. Selected clinical applications for diseases such as cancer, neurodegenerative diseases, cardiovascular problems and thyroid diseases are examined. The article concludes with a brief classification in terms of future perspectives and strategies for linking research findings to clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of oxyphil cells for 99mTc-sestamibi uptake in primary hyperparathyroidism: a retrospective observational study. Radiomic signatures derived from baseline 18F FDG PET/CT imaging can predict tumor-infiltrating lymphocyte values in patients with primary breast cancer. The impact of the xSPECT reconstruction algorithms on the recovery coefficients value for small tumors: a phantom study with 177Lu. PSMA - Targeted Clinical Molecular Imaging of Atherosclerosis: Correlation with Cardiovascular Risk Factors. [18F]FDG PET/CT Imaging and Hematological Parameters Can Help Predict HPV Status in Head and Neck Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1