{"title":"评估植物特征多样性作为意大利阿尔卑斯山亚高山草原物种α-和β-多样性的指标","authors":"Hafiz Ali Imran, Karolina Sakowska, Damiano Gianelle, Duccio Rocchini, Michele Dalponte, Michele Scotton, Loris Vescovo","doi":"10.1002/rse2.370","DOIUrl":null,"url":null,"abstract":"As the need for ecosystem biodiversity assessment increases within the climate crisis framework, more and more studies using spectral variation hypothesis (SVH) are proposed to assess biodiversity at various scales. The SVH implies optical diversity (also called spectral diversity) is driven by light absorption dynamics associated with plant traits (PTs) variability (which is an indicator of functional diversity) which is, in turn, determined by biodiversity. In this study, we examined the relationship between PTs variability, optical diversity and α- and β-diversity at different taxonomic ranks at the Monte Bondone grasslands, Trentino province, Italy. The results of the study showed that the PTs variability, at the α scale, was not correlated with biodiversity. On the other hand, the results observed at the community scale (β-diversity) showed that the variation of some of the investigated biochemical and biophysical PTs was associated with the β-diversity. We used the Mantel test to analyse the relationship between the PTs variability and species β-diversity. The results showed a correlation coefficient of up to 0.50 between PTs variability and species β-diversity. For higher taxonomic ranks such as family and functional groups, a slightly higher Spearman's correlation coefficient of up to 0.64 and 0.61 was observed, respectively. The SVH approach was also tested to estimate β-diversity and we found that spectral diversity calculated by Spectral Angle Mapper showed to be a better proxy of biodiversity in the same ecosystem where the spectral diversity approach failed to estimate α-diversity. These findings suggest that optical and PTs diversity approaches can be used to predict species diversity in the grasslands ecosystem where the species turnover is high.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"43 39","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing plant trait diversity as an indicators of species α- and β-diversity in a subalpine grassland of the Italian Alps\",\"authors\":\"Hafiz Ali Imran, Karolina Sakowska, Damiano Gianelle, Duccio Rocchini, Michele Dalponte, Michele Scotton, Loris Vescovo\",\"doi\":\"10.1002/rse2.370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the need for ecosystem biodiversity assessment increases within the climate crisis framework, more and more studies using spectral variation hypothesis (SVH) are proposed to assess biodiversity at various scales. The SVH implies optical diversity (also called spectral diversity) is driven by light absorption dynamics associated with plant traits (PTs) variability (which is an indicator of functional diversity) which is, in turn, determined by biodiversity. In this study, we examined the relationship between PTs variability, optical diversity and α- and β-diversity at different taxonomic ranks at the Monte Bondone grasslands, Trentino province, Italy. The results of the study showed that the PTs variability, at the α scale, was not correlated with biodiversity. On the other hand, the results observed at the community scale (β-diversity) showed that the variation of some of the investigated biochemical and biophysical PTs was associated with the β-diversity. We used the Mantel test to analyse the relationship between the PTs variability and species β-diversity. The results showed a correlation coefficient of up to 0.50 between PTs variability and species β-diversity. For higher taxonomic ranks such as family and functional groups, a slightly higher Spearman's correlation coefficient of up to 0.64 and 0.61 was observed, respectively. The SVH approach was also tested to estimate β-diversity and we found that spectral diversity calculated by Spectral Angle Mapper showed to be a better proxy of biodiversity in the same ecosystem where the spectral diversity approach failed to estimate α-diversity. These findings suggest that optical and PTs diversity approaches can be used to predict species diversity in the grasslands ecosystem where the species turnover is high.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"43 39\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.370\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.370","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessing plant trait diversity as an indicators of species α- and β-diversity in a subalpine grassland of the Italian Alps
As the need for ecosystem biodiversity assessment increases within the climate crisis framework, more and more studies using spectral variation hypothesis (SVH) are proposed to assess biodiversity at various scales. The SVH implies optical diversity (also called spectral diversity) is driven by light absorption dynamics associated with plant traits (PTs) variability (which is an indicator of functional diversity) which is, in turn, determined by biodiversity. In this study, we examined the relationship between PTs variability, optical diversity and α- and β-diversity at different taxonomic ranks at the Monte Bondone grasslands, Trentino province, Italy. The results of the study showed that the PTs variability, at the α scale, was not correlated with biodiversity. On the other hand, the results observed at the community scale (β-diversity) showed that the variation of some of the investigated biochemical and biophysical PTs was associated with the β-diversity. We used the Mantel test to analyse the relationship between the PTs variability and species β-diversity. The results showed a correlation coefficient of up to 0.50 between PTs variability and species β-diversity. For higher taxonomic ranks such as family and functional groups, a slightly higher Spearman's correlation coefficient of up to 0.64 and 0.61 was observed, respectively. The SVH approach was also tested to estimate β-diversity and we found that spectral diversity calculated by Spectral Angle Mapper showed to be a better proxy of biodiversity in the same ecosystem where the spectral diversity approach failed to estimate α-diversity. These findings suggest that optical and PTs diversity approaches can be used to predict species diversity in the grasslands ecosystem where the species turnover is high.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.