的矩阵偏差不等式ℓp-范数

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL Random Matrices-Theory and Applications Pub Date : 2023-06-15 DOI:10.1142/s2010326323500077
Yuan-Chung Sheu, Te-Chun Wang
{"title":"的矩阵偏差不等式ℓp-范数","authors":"Yuan-Chung Sheu, Te-Chun Wang","doi":"10.1142/s2010326323500077","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, <i>High-Dimensional Probability: An Introduction with Applications in Data Science</i>, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span>-norm with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></math></span><span></span> and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span><span></span>-space to <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span><span></span>-space for all i.i.d. ensemble sub-Gaussian matrices.</p>","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"14 8","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix deviation inequality for ℓp-norm\",\"authors\":\"Yuan-Chung Sheu, Te-Chun Wang\",\"doi\":\"10.1142/s2010326323500077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, <i>High-Dimensional Probability: An Introduction with Applications in Data Science</i>, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span>-norm with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></math></span><span></span> and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span><span></span>-space to <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span><span></span>-space for all i.i.d. ensemble sub-Gaussian matrices.</p>\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326323500077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

受i.i.d.系综高斯矩阵的一般矩阵偏差不等式[R.Vershynin,《高维概率:数据科学应用导论》,剑桥统计与概率数学系列(剑桥大学出版社,2018),doi:10.1017/9781108231596 of Theorem 11.1.5]的启发,我们证明了这一性质适用于ℓ1≤p<;∞的p-范数和i.i.d.系综亚高斯矩阵,即具有i.i.d.均值为零、单位方差、亚高斯项的随机矩阵。由于我们的结果,我们从中建立了Johnson–Lindenstrauss引理ℓ2n空间到ℓpm空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matrix deviation inequality for ℓp-norm

Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the p-norm with 1p< and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from 2n-space to pm-space for all i.i.d. ensemble sub-Gaussian matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
期刊最新文献
Factoring determinants and applications to number theory Dynamics of a rank-one multiplicative perturbation of a unitary matrix Monotonicity of the logarithmic energy for random matrices Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion Characteristic polynomials of orthogonal and symplectic random matrices, Jacobi ensembles & L-functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1