水下软机器人的人工肌肉:材料及其相互作用

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2023-11-06 DOI:10.1146/annurev-conmatphys-032822-041146
Yu Jun Tan, Gianmarco Mengaldo, Cecilia Laschi
{"title":"水下软机器人的人工肌肉:材料及其相互作用","authors":"Yu Jun Tan, Gianmarco Mengaldo, Cecilia Laschi","doi":"10.1146/annurev-conmatphys-032822-041146","DOIUrl":null,"url":null,"abstract":"Underwater soft robots are typically constructed from soft and flexible materials, which enable them to adapt to aquatic environments where the terrain can be complex. They are often inspired by soft-bodied aquatic animals and can be used for a range of tasks, such as underwater exploration, environmental monitoring, and rescue operations. However, the design of these robots presents significant challenges, as it requires soft materials and systems that can withstand the harsh and varied conditions of ocean environments. This review delves into the physics of soft materials and outlines the constitutive models for such materials. Through an exploration of the muscle structures in aquatic creatures like octopuses and stingrays, we highlight the interplay between the materials that make up artificial muscles and how these muscles interact with their external surroundings. Finally, we conclude by outlining unresolved challenges and providing potential avenues for future research.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"54 17","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Muscles for Underwater Soft Robots: Materials and Their Interactions\",\"authors\":\"Yu Jun Tan, Gianmarco Mengaldo, Cecilia Laschi\",\"doi\":\"10.1146/annurev-conmatphys-032822-041146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater soft robots are typically constructed from soft and flexible materials, which enable them to adapt to aquatic environments where the terrain can be complex. They are often inspired by soft-bodied aquatic animals and can be used for a range of tasks, such as underwater exploration, environmental monitoring, and rescue operations. However, the design of these robots presents significant challenges, as it requires soft materials and systems that can withstand the harsh and varied conditions of ocean environments. This review delves into the physics of soft materials and outlines the constitutive models for such materials. Through an exploration of the muscle structures in aquatic creatures like octopuses and stingrays, we highlight the interplay between the materials that make up artificial muscles and how these muscles interact with their external surroundings. Finally, we conclude by outlining unresolved challenges and providing potential avenues for future research.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"54 17\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-032822-041146\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-032822-041146","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

水下软机器人通常由柔软灵活的材料制成,这使它们能够适应地形复杂的水生环境。它们通常受到软体水生动物的启发,可用于一系列任务,如水下勘探、环境监测和救援行动。然而,这些机器人的设计面临着重大挑战,因为它需要能够承受恶劣多变的海洋环境条件的软材料和系统。这篇综述深入研究了软材料的物理性质,并概述了此类材料的本构模型。通过探索章鱼和黄貂鱼等水生生物的肌肉结构,我们强调了构成人造肌肉的材料之间的相互作用,以及这些肌肉如何与外部环境相互作用。最后,我们概述了尚未解决的挑战,并为未来的研究提供了潜在的途径。《凝聚态物理学年度评论》第15卷预计最终在线出版日期为2024年3月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Muscles for Underwater Soft Robots: Materials and Their Interactions
Underwater soft robots are typically constructed from soft and flexible materials, which enable them to adapt to aquatic environments where the terrain can be complex. They are often inspired by soft-bodied aquatic animals and can be used for a range of tasks, such as underwater exploration, environmental monitoring, and rescue operations. However, the design of these robots presents significant challenges, as it requires soft materials and systems that can withstand the harsh and varied conditions of ocean environments. This review delves into the physics of soft materials and outlines the constitutive models for such materials. Through an exploration of the muscle structures in aquatic creatures like octopuses and stingrays, we highlight the interplay between the materials that make up artificial muscles and how these muscles interact with their external surroundings. Finally, we conclude by outlining unresolved challenges and providing potential avenues for future research.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Machine Learning for Climate Physics and Simulations From Fluctuations and Disorder to Scaling and Control: The Emergence of Resistance in Microbial Communities Activity Unmasks Chirality in Liquid-Crystalline Matter High-Order Van Hove Singularities and Their Connection to Flat Bands Emergent Simplicities in the Living Histories of Individual Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1