Junling Yuan , Xuhong Li , Qikun Zhang , Jing Zhang , Suping Li
{"title":"一种半无滤波器弹性光网络的路由调制和频谱分配算法","authors":"Junling Yuan , Xuhong Li , Qikun Zhang , Jing Zhang , Suping Li","doi":"10.1016/j.osn.2023.100764","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Development of 5G/F5G technology leads to massive applications accessing to backbone networks, which requires the backbone networks to be upgraded. Semi-filterless elastic </span>optical network (semi-FEON) is a suitable technology to cheaply and gradually upgrade backbone networks. In semi-FEON, routing, modulation and spectrum assignment (RMSA) problem is one of the key issues. In this paper, we study the dynamic RMSA problem in semi-FEON and propose an RMSA algorithm. The algorithm includes three innovations: a K-shortest-subnet-paths (KSSP) algorithm is designed to search candidate paths in semi-FEON, a load-balancing-least-resources (LBLR) policy is introduced to re-sort the candidate paths, and a maximum-occupied-neighbors (MON) rule is proposed to assign spectrum resources to connection requests in semi-FEON. Simulation results show that the proposed KSSP-LBLR-MON algorithm outperforms the existing works in term of bandwidth </span>blocking probability. Concretely, the improvement ratio is greater than 59.98% and 66.64% in German-Net and Henan-Net, respectively.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"51 ","pages":"Article 100764"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A routing modulation and spectrum assignment algorithm for semi-filterless elastic optical networks\",\"authors\":\"Junling Yuan , Xuhong Li , Qikun Zhang , Jing Zhang , Suping Li\",\"doi\":\"10.1016/j.osn.2023.100764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Development of 5G/F5G technology leads to massive applications accessing to backbone networks, which requires the backbone networks to be upgraded. Semi-filterless elastic </span>optical network (semi-FEON) is a suitable technology to cheaply and gradually upgrade backbone networks. In semi-FEON, routing, modulation and spectrum assignment (RMSA) problem is one of the key issues. In this paper, we study the dynamic RMSA problem in semi-FEON and propose an RMSA algorithm. The algorithm includes three innovations: a K-shortest-subnet-paths (KSSP) algorithm is designed to search candidate paths in semi-FEON, a load-balancing-least-resources (LBLR) policy is introduced to re-sort the candidate paths, and a maximum-occupied-neighbors (MON) rule is proposed to assign spectrum resources to connection requests in semi-FEON. Simulation results show that the proposed KSSP-LBLR-MON algorithm outperforms the existing works in term of bandwidth </span>blocking probability. Concretely, the improvement ratio is greater than 59.98% and 66.64% in German-Net and Henan-Net, respectively.</p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"51 \",\"pages\":\"Article 100764\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427723000358\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427723000358","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A routing modulation and spectrum assignment algorithm for semi-filterless elastic optical networks
Development of 5G/F5G technology leads to massive applications accessing to backbone networks, which requires the backbone networks to be upgraded. Semi-filterless elastic optical network (semi-FEON) is a suitable technology to cheaply and gradually upgrade backbone networks. In semi-FEON, routing, modulation and spectrum assignment (RMSA) problem is one of the key issues. In this paper, we study the dynamic RMSA problem in semi-FEON and propose an RMSA algorithm. The algorithm includes three innovations: a K-shortest-subnet-paths (KSSP) algorithm is designed to search candidate paths in semi-FEON, a load-balancing-least-resources (LBLR) policy is introduced to re-sort the candidate paths, and a maximum-occupied-neighbors (MON) rule is proposed to assign spectrum resources to connection requests in semi-FEON. Simulation results show that the proposed KSSP-LBLR-MON algorithm outperforms the existing works in term of bandwidth blocking probability. Concretely, the improvement ratio is greater than 59.98% and 66.64% in German-Net and Henan-Net, respectively.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks