用光弹性法测量陶瓷电解质中枝晶诱导应力

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-01-03 DOI:10.1016/j.matt.2023.10.014
Christos E. Athanasiou , Cole D. Fincher , Colin Gilgenbach , Huajian Gao , W. Craig Carter , Yet-Ming Chiang , Brian W. Sheldon
{"title":"用光弹性法测量陶瓷电解质中枝晶诱导应力","authors":"Christos E. Athanasiou ,&nbsp;Cole D. Fincher ,&nbsp;Colin Gilgenbach ,&nbsp;Huajian Gao ,&nbsp;W. Craig Carter ,&nbsp;Yet-Ming Chiang ,&nbsp;Brian W. Sheldon","doi":"10.1016/j.matt.2023.10.014","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Fundamental understanding of stress buildup in solid-state batteries is elusive due to the challenges in observing electro-chemo-mechanical phenomena inside solid electrolytes. In this work, we address this problem by developing a method to directly measure stresses within solid-state electrolytes. As a proof-of-concept, we provide the first direct measurements of the stress fields generated around the lithium </span>metal dendrites<span> in a model garnet electrolyte, Li</span></span><sub>6.75</sub>La<sub>3</sub>Zr<sub>1.75</sub>Ta<sub>0.25</sub>O<sub>12</sub><span>, and show that these are consistent with the predictions for an internally loaded crack in an elastic solid. The measurements are based on employing the principle of photoelasticity to probe the stress fields during </span><em>operando</em> electrochemical cycling in a plan-view cell. This new experimental methodology provides a means to access chemo-mechanical events in solid-state batteries and has the potential to provide insight into a variety of chemo-mechanical failure modes.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 1","pages":"Pages 95-106"},"PeriodicalIF":17.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operando measurements of dendrite-induced stresses in ceramic electrolytes using photoelasticity\",\"authors\":\"Christos E. Athanasiou ,&nbsp;Cole D. Fincher ,&nbsp;Colin Gilgenbach ,&nbsp;Huajian Gao ,&nbsp;W. Craig Carter ,&nbsp;Yet-Ming Chiang ,&nbsp;Brian W. Sheldon\",\"doi\":\"10.1016/j.matt.2023.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Fundamental understanding of stress buildup in solid-state batteries is elusive due to the challenges in observing electro-chemo-mechanical phenomena inside solid electrolytes. In this work, we address this problem by developing a method to directly measure stresses within solid-state electrolytes. As a proof-of-concept, we provide the first direct measurements of the stress fields generated around the lithium </span>metal dendrites<span> in a model garnet electrolyte, Li</span></span><sub>6.75</sub>La<sub>3</sub>Zr<sub>1.75</sub>Ta<sub>0.25</sub>O<sub>12</sub><span>, and show that these are consistent with the predictions for an internally loaded crack in an elastic solid. The measurements are based on employing the principle of photoelasticity to probe the stress fields during </span><em>operando</em> electrochemical cycling in a plan-view cell. This new experimental methodology provides a means to access chemo-mechanical events in solid-state batteries and has the potential to provide insight into a variety of chemo-mechanical failure modes.</p></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 1\",\"pages\":\"Pages 95-106\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238523005155\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523005155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于在观察固体电解质内部的电化学-机械现象方面存在挑战,对固态电池中应力积聚的基本理解是难以捉摸的。在这项工作中,我们通过开发一种直接测量固态电解质内应力的方法来解决这个问题。作为概念验证,我们首次直接测量了模型石榴石电解质Li6.75La3Zr1.75Ta0.25O12中锂金属枝晶周围产生的应力场,并表明这些应力场与弹性固体中内部加载裂纹的预测一致。测量是基于采用光弹性原理来探测平面电池中操作电化学循环过程中的应力场。这种新的实验方法为了解固态电池中的化学机械事件提供了一种手段,并有可能深入了解各种化学机械故障模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operando measurements of dendrite-induced stresses in ceramic electrolytes using photoelasticity

Fundamental understanding of stress buildup in solid-state batteries is elusive due to the challenges in observing electro-chemo-mechanical phenomena inside solid electrolytes. In this work, we address this problem by developing a method to directly measure stresses within solid-state electrolytes. As a proof-of-concept, we provide the first direct measurements of the stress fields generated around the lithium metal dendrites in a model garnet electrolyte, Li6.75La3Zr1.75Ta0.25O12, and show that these are consistent with the predictions for an internally loaded crack in an elastic solid. The measurements are based on employing the principle of photoelasticity to probe the stress fields during operando electrochemical cycling in a plan-view cell. This new experimental methodology provides a means to access chemo-mechanical events in solid-state batteries and has the potential to provide insight into a variety of chemo-mechanical failure modes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1