{"title":"在制冷压缩机中使用具有Al2O3、石墨烯或CNT纳米颗粒的POE润滑剂的实验研究。","authors":"Kayhan Dağıdır, Kemal Bilen","doi":"10.3762/bjnano.14.86","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the use of nanolubricants containing Al<sub>2</sub>O<sub>3</sub>, graphene, and carbon nanotubes (CNTs) at different mass fractions in a refrigeration compressor was experimentally investigated. The required electrical power of the compressor was measured to determine the effect of the use of nanolubricants. Nanoparticles used in the preparation of nanolubricants were gradually added to the lubricant to determine the optimum nanoparticle mass fraction for each nanoparticle type. Thus, it was found that the compressor operated safely and efficiently with nanolubricants. Furthermore, the optimum mass fractions were determined to be 0.750% for Al<sub>2</sub>O<sub>3</sub>, 0.250% for graphene, and 0.250% for CNTs for operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al<sub>2</sub>O<sub>3</sub>, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor using pure oil. Moreover, density and dynamic viscosity of the nanolubricant samples used in the experiments were also measured, and their kinematic viscosity, which is an important parameter for lubricants, was calculated. It was determined that the kinematic viscosity continuously increased with increasing nanoparticle fraction. In conclusion, nanolubricants containing nanoparticles above the optimum mass fraction increase the required electrical power of the compressor. It is concluded that nanoparticle fractions should not be used above the optimum value in nanolubricant applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"14 ","pages":"1041-1058"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of usage of POE lubricants with Al<sub>2</sub>O<sub>3</sub>, graphene or CNT nanoparticles in a refrigeration compressor.\",\"authors\":\"Kayhan Dağıdır, Kemal Bilen\",\"doi\":\"10.3762/bjnano.14.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the use of nanolubricants containing Al<sub>2</sub>O<sub>3</sub>, graphene, and carbon nanotubes (CNTs) at different mass fractions in a refrigeration compressor was experimentally investigated. The required electrical power of the compressor was measured to determine the effect of the use of nanolubricants. Nanoparticles used in the preparation of nanolubricants were gradually added to the lubricant to determine the optimum nanoparticle mass fraction for each nanoparticle type. Thus, it was found that the compressor operated safely and efficiently with nanolubricants. Furthermore, the optimum mass fractions were determined to be 0.750% for Al<sub>2</sub>O<sub>3</sub>, 0.250% for graphene, and 0.250% for CNTs for operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al<sub>2</sub>O<sub>3</sub>, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor using pure oil. Moreover, density and dynamic viscosity of the nanolubricant samples used in the experiments were also measured, and their kinematic viscosity, which is an important parameter for lubricants, was calculated. It was determined that the kinematic viscosity continuously increased with increasing nanoparticle fraction. In conclusion, nanolubricants containing nanoparticles above the optimum mass fraction increase the required electrical power of the compressor. It is concluded that nanoparticle fractions should not be used above the optimum value in nanolubricant applications.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"14 \",\"pages\":\"1041-1058\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.14.86\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.14.86","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor.
In this study, the use of nanolubricants containing Al2O3, graphene, and carbon nanotubes (CNTs) at different mass fractions in a refrigeration compressor was experimentally investigated. The required electrical power of the compressor was measured to determine the effect of the use of nanolubricants. Nanoparticles used in the preparation of nanolubricants were gradually added to the lubricant to determine the optimum nanoparticle mass fraction for each nanoparticle type. Thus, it was found that the compressor operated safely and efficiently with nanolubricants. Furthermore, the optimum mass fractions were determined to be 0.750% for Al2O3, 0.250% for graphene, and 0.250% for CNTs for operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al2O3, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor using pure oil. Moreover, density and dynamic viscosity of the nanolubricant samples used in the experiments were also measured, and their kinematic viscosity, which is an important parameter for lubricants, was calculated. It was determined that the kinematic viscosity continuously increased with increasing nanoparticle fraction. In conclusion, nanolubricants containing nanoparticles above the optimum mass fraction increase the required electrical power of the compressor. It is concluded that nanoparticle fractions should not be used above the optimum value in nanolubricant applications.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.