Ronny Grunert, Dirk Winkler, Nikolas Knoop, Martin Weidling, Cornelia Matzke, Sebastian Scholz, Juergen Meixensberger, Felix Arlt
{"title":"一种使用形状记忆合金的颈椎膨胀螺钉的新概念——可行性研究。","authors":"Ronny Grunert, Dirk Winkler, Nikolas Knoop, Martin Weidling, Cornelia Matzke, Sebastian Scholz, Juergen Meixensberger, Felix Arlt","doi":"10.1055/a-2206-2578","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> In general, sufficient anchoring of screws in the bone material ensures the intended primary stability.</p><p><strong>Methods: </strong> Shape memory materials offer the option of using temperature-associated deformation energy in a targeted manner to compensate the special situation of osteoporotic bones or the potential lack of anchoring. An expansion screw was developed for these purposes. Using finite element analysis (FEA), the variability of screw configuration and actuator was assessed from shape memory. In particular, the dimensioning of the screw slot, the actuator length, and the actuator diameter as well as the angle of attack in relation to the intended force development were considered.</p><p><strong>Results: </strong> As a result of the FEA, a special configuration of expansion screw and shape memory element could be found. Accordingly, with an optimal screw diameter of 4 mm, an actuator diameter of 0.8 mm, a screw slot of 7.8 mm in length, and an angle of attack of 25 degrees, the best compromise between individual components and high efficiency in favor of maximum strength can be predicted.</p><p><strong>Conclusion: </strong> Shape memory material offers the possibility of using completely new forms of power development. By skillfully modifying the mechanical and shape memory elements, their interaction results in a calculated development of force in favor of a high primary stability of the screw material used. Activation by means of body temperature is a very elegant way of initializing the intended locking and screw strength.</p>","PeriodicalId":16544,"journal":{"name":"Journal of neurological surgery. Part A, Central European neurosurgery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Concept for Cervical Expansion Screws Using Shape Memory Alloy: A Feasibility Study.\",\"authors\":\"Ronny Grunert, Dirk Winkler, Nikolas Knoop, Martin Weidling, Cornelia Matzke, Sebastian Scholz, Juergen Meixensberger, Felix Arlt\",\"doi\":\"10.1055/a-2206-2578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong> In general, sufficient anchoring of screws in the bone material ensures the intended primary stability.</p><p><strong>Methods: </strong> Shape memory materials offer the option of using temperature-associated deformation energy in a targeted manner to compensate the special situation of osteoporotic bones or the potential lack of anchoring. An expansion screw was developed for these purposes. Using finite element analysis (FEA), the variability of screw configuration and actuator was assessed from shape memory. In particular, the dimensioning of the screw slot, the actuator length, and the actuator diameter as well as the angle of attack in relation to the intended force development were considered.</p><p><strong>Results: </strong> As a result of the FEA, a special configuration of expansion screw and shape memory element could be found. Accordingly, with an optimal screw diameter of 4 mm, an actuator diameter of 0.8 mm, a screw slot of 7.8 mm in length, and an angle of attack of 25 degrees, the best compromise between individual components and high efficiency in favor of maximum strength can be predicted.</p><p><strong>Conclusion: </strong> Shape memory material offers the possibility of using completely new forms of power development. By skillfully modifying the mechanical and shape memory elements, their interaction results in a calculated development of force in favor of a high primary stability of the screw material used. Activation by means of body temperature is a very elegant way of initializing the intended locking and screw strength.</p>\",\"PeriodicalId\":16544,\"journal\":{\"name\":\"Journal of neurological surgery. Part A, Central European neurosurgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurological surgery. Part A, Central European neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2206-2578\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurological surgery. Part A, Central European neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2206-2578","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A New Concept for Cervical Expansion Screws Using Shape Memory Alloy: A Feasibility Study.
Background: In general, sufficient anchoring of screws in the bone material ensures the intended primary stability.
Methods: Shape memory materials offer the option of using temperature-associated deformation energy in a targeted manner to compensate the special situation of osteoporotic bones or the potential lack of anchoring. An expansion screw was developed for these purposes. Using finite element analysis (FEA), the variability of screw configuration and actuator was assessed from shape memory. In particular, the dimensioning of the screw slot, the actuator length, and the actuator diameter as well as the angle of attack in relation to the intended force development were considered.
Results: As a result of the FEA, a special configuration of expansion screw and shape memory element could be found. Accordingly, with an optimal screw diameter of 4 mm, an actuator diameter of 0.8 mm, a screw slot of 7.8 mm in length, and an angle of attack of 25 degrees, the best compromise between individual components and high efficiency in favor of maximum strength can be predicted.
Conclusion: Shape memory material offers the possibility of using completely new forms of power development. By skillfully modifying the mechanical and shape memory elements, their interaction results in a calculated development of force in favor of a high primary stability of the screw material used. Activation by means of body temperature is a very elegant way of initializing the intended locking and screw strength.
期刊介绍:
The Journal of Neurological Surgery Part A: Central European Neurosurgery (JNLS A) is a major publication from the world''s leading publisher in neurosurgery. JNLS A currently serves as the official organ of several national neurosurgery societies.
JNLS A is a peer-reviewed journal publishing original research, review articles, and technical notes covering all aspects of neurological surgery. The focus of JNLS A includes microsurgery as well as the latest minimally invasive techniques, such as stereotactic-guided surgery, endoscopy, and endovascular procedures. JNLS A covers purely neurosurgical topics.