S T Kempers, S Borrelli, E R Kieft, H A van Doorn, P H A Mutsaers, O J Luiten
{"title":"用于超快电子显微镜的基于光电二极管的时间零点测定。","authors":"S T Kempers, S Borrelli, E R Kieft, H A van Doorn, P H A Mutsaers, O J Luiten","doi":"10.1063/4.0000218","DOIUrl":null,"url":null,"abstract":"<p><p>Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photodiode-based time zero determination for ultrafast electron microscopy.\",\"authors\":\"S T Kempers, S Borrelli, E R Kieft, H A van Doorn, P H A Mutsaers, O J Luiten\",\"doi\":\"10.1063/4.0000218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000218\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000218","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photodiode-based time zero determination for ultrafast electron microscopy.
Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.