Jingtao Wei, Ke Ji, Yue Zhang, Ji Zhang, Xiaojiang Wu, Xin Ji, Kai Zhou, Xuesong Yang, Hongfeng Lu, Anqiang Wang, Zhaode Bu
{"title":"胃类肝腺癌化疗疗效相关分子标志物的探讨。","authors":"Jingtao Wei, Ke Ji, Yue Zhang, Ji Zhang, Xiaojiang Wu, Xin Ji, Kai Zhou, Xuesong Yang, Hongfeng Lu, Anqiang Wang, Zhaode Bu","doi":"10.1007/s13402-023-00892-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS.</p><p><strong>Methods: </strong>Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively.</p><p><strong>Results: </strong>A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy.</p><p><strong>Conclusion: </strong>Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach.\",\"authors\":\"Jingtao Wei, Ke Ji, Yue Zhang, Ji Zhang, Xiaojiang Wu, Xin Ji, Kai Zhou, Xuesong Yang, Hongfeng Lu, Anqiang Wang, Zhaode Bu\",\"doi\":\"10.1007/s13402-023-00892-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS.</p><p><strong>Methods: </strong>Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively.</p><p><strong>Results: </strong>A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy.</p><p><strong>Conclusion: </strong>Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00892-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00892-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach.
Purpose: Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS.
Methods: Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively.
Results: A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy.
Conclusion: Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.