{"title":"等离子体催化剂界面的原位/操作红外光谱探测","authors":"Russell J. Clarke, and , Jason C. Hicks*, ","doi":"10.1021/acsengineeringau.2c00026","DOIUrl":null,"url":null,"abstract":"<p >Plasma-surface coupling has emerged as a promising approach to perform chemical transformations under mild conditions that are otherwise difficult or impossible thermally. However, a few examples of inexpensive and accessible <i>in situ</i>/<i>operando</i> techniques exist for observing plasma-solid interactions, which has prevented a thorough understanding of underlying surface mechanisms. Here, we provide a simple and adaptable design for a dielectric barrier discharge (DBD) plasma cell capable of interfacing with Fourier transform infrared spectroscopy (FTIR), optical emission spectroscopy (OES), and mass spectrometry (MS) to simultaneously characterize the surface, the plasma phase, and the gas phase, respectively. The system was demonstrated using two example applications: (1) plasma oxidation of primary amine functionalized SBA-15 and (2) catalytic low temperature nitrogen oxidation. The results from application (1) provided direct evidence of a 1% O<sub>2</sub>/He plasma interacting with the aminosilica surface by selective oxidation of the amino groups to nitro groups without altering the alkyl tether. Application (2) was used to detect the evolution of NO<sub>X</sub> species bound to both platinum and silica surfaces under plasma stimulation. Together, the experimental results showcase the breadth of possible applications for this device and confirm its potential as an essential tool for conducting research on plasma-surface coupling.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00026","citationCount":"2","resultStr":"{\"title\":\"Interrogation of the Plasma-Catalyst Interface via In Situ/Operando Transmission Infrared Spectroscopy\",\"authors\":\"Russell J. Clarke, and , Jason C. Hicks*, \",\"doi\":\"10.1021/acsengineeringau.2c00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plasma-surface coupling has emerged as a promising approach to perform chemical transformations under mild conditions that are otherwise difficult or impossible thermally. However, a few examples of inexpensive and accessible <i>in situ</i>/<i>operando</i> techniques exist for observing plasma-solid interactions, which has prevented a thorough understanding of underlying surface mechanisms. Here, we provide a simple and adaptable design for a dielectric barrier discharge (DBD) plasma cell capable of interfacing with Fourier transform infrared spectroscopy (FTIR), optical emission spectroscopy (OES), and mass spectrometry (MS) to simultaneously characterize the surface, the plasma phase, and the gas phase, respectively. The system was demonstrated using two example applications: (1) plasma oxidation of primary amine functionalized SBA-15 and (2) catalytic low temperature nitrogen oxidation. The results from application (1) provided direct evidence of a 1% O<sub>2</sub>/He plasma interacting with the aminosilica surface by selective oxidation of the amino groups to nitro groups without altering the alkyl tether. Application (2) was used to detect the evolution of NO<sub>X</sub> species bound to both platinum and silica surfaces under plasma stimulation. Together, the experimental results showcase the breadth of possible applications for this device and confirm its potential as an essential tool for conducting research on plasma-surface coupling.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00026\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Interrogation of the Plasma-Catalyst Interface via In Situ/Operando Transmission Infrared Spectroscopy
Plasma-surface coupling has emerged as a promising approach to perform chemical transformations under mild conditions that are otherwise difficult or impossible thermally. However, a few examples of inexpensive and accessible in situ/operando techniques exist for observing plasma-solid interactions, which has prevented a thorough understanding of underlying surface mechanisms. Here, we provide a simple and adaptable design for a dielectric barrier discharge (DBD) plasma cell capable of interfacing with Fourier transform infrared spectroscopy (FTIR), optical emission spectroscopy (OES), and mass spectrometry (MS) to simultaneously characterize the surface, the plasma phase, and the gas phase, respectively. The system was demonstrated using two example applications: (1) plasma oxidation of primary amine functionalized SBA-15 and (2) catalytic low temperature nitrogen oxidation. The results from application (1) provided direct evidence of a 1% O2/He plasma interacting with the aminosilica surface by selective oxidation of the amino groups to nitro groups without altering the alkyl tether. Application (2) was used to detect the evolution of NOX species bound to both platinum and silica surfaces under plasma stimulation. Together, the experimental results showcase the breadth of possible applications for this device and confirm its potential as an essential tool for conducting research on plasma-surface coupling.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)