Molly S. Costanza-Robinson , Emory M. Payne , Elaine Dellinger , Kae Fink , Richard C. Bunt , Malcolm Littlefield , Barbara A. Mejaes , Rachael K. Morris , Lauren N. Pincus , Emma H. Wilcox
{"title":"含水饱和度对HDTMA-、HDTMP-和hdpy改性蒙脱土有机粘土层间性质的影响","authors":"Molly S. Costanza-Robinson , Emory M. Payne , Elaine Dellinger , Kae Fink , Richard C. Bunt , Malcolm Littlefield , Barbara A. Mejaes , Rachael K. Morris , Lauren N. Pincus , Emma H. Wilcox","doi":"10.1016/j.clay.2023.107188","DOIUrl":null,"url":null,"abstract":"<div><p>Surfactant-modified clay minerals, organoclays, are well-studied and used commercially for removing contaminants from water. Nevertheless, dry organoclay properties are typically used to understand and predict contaminant sorption. In this work, the effects of water saturation on two properties important to contaminant sorption were examined: organoclay interlayer space and surfactant alkyl tail conformational ordering. Montmorillonite was modified to 0.25–3.0 CEC using three surfactants: hexadecyltrimethylammonium (HDTMA), hexadecylpyridinium (HDPy), and hexadecyltrimethylphosphonium (HDTMP). At low surfactant-loadings (< 1 CEC and < 15% <em>f</em><sub><em>OC</em></sub>), water saturation expanded the maximum organoclay interlayer by 4–8 Å, depending on the surfactant and its loading but had little effect on surfactant tail conformational ordering. At low surfactant loadings, water saturation likely promotes contaminant sorption relative to expectations based on dry organoclay properties, particularly for larger contaminants, due to a relaxation of the physical constraints of the interlayer. At higher surfactant loadings, HDTMA and HDTMP organoclays showed relatively small effects of water saturation, but effects were significant for HDPy organoclays. The maximum interlayer space of the HDPy organoclay at 20.7% <em>f</em><sub><em>OC</em></sub> expanded 3-fold (+22.3 Å) upon hydration, which is attributed to a substantial rearrangement of the pyridinium headgroup. All HDPy organoclays with <em>f</em><sub><em>OC</em></sub> > 20% experienced a notable increase in the alkyl tail conformational ordering upon hydration, becoming fully solid-like, even as negligible interlayer expansion occurred at the highest loadings. At high HDPy-loading water saturation would likely restrict sorption of contaminants relative to what might be expected based on dry properties, due to the energetic barrier of cavity formation in the more solid-like interlayer phase. This work provides evidence from three types of organoclays that water-saturated organoclay properties can differ substantially from those of dry organoclays. Characterization of organoclays under water-saturated conditions that are relevant to contaminant sorption will facilitate our understanding and improvement of organoclay performance.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"247 ","pages":"Article 107188"},"PeriodicalIF":5.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of water saturation on interlayer properties of HDTMA-, HDTMP-, and HDPy-modified montmorillonite organoclays\",\"authors\":\"Molly S. Costanza-Robinson , Emory M. Payne , Elaine Dellinger , Kae Fink , Richard C. Bunt , Malcolm Littlefield , Barbara A. Mejaes , Rachael K. Morris , Lauren N. Pincus , Emma H. Wilcox\",\"doi\":\"10.1016/j.clay.2023.107188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surfactant-modified clay minerals, organoclays, are well-studied and used commercially for removing contaminants from water. Nevertheless, dry organoclay properties are typically used to understand and predict contaminant sorption. In this work, the effects of water saturation on two properties important to contaminant sorption were examined: organoclay interlayer space and surfactant alkyl tail conformational ordering. Montmorillonite was modified to 0.25–3.0 CEC using three surfactants: hexadecyltrimethylammonium (HDTMA), hexadecylpyridinium (HDPy), and hexadecyltrimethylphosphonium (HDTMP). At low surfactant-loadings (< 1 CEC and < 15% <em>f</em><sub><em>OC</em></sub>), water saturation expanded the maximum organoclay interlayer by 4–8 Å, depending on the surfactant and its loading but had little effect on surfactant tail conformational ordering. At low surfactant loadings, water saturation likely promotes contaminant sorption relative to expectations based on dry organoclay properties, particularly for larger contaminants, due to a relaxation of the physical constraints of the interlayer. At higher surfactant loadings, HDTMA and HDTMP organoclays showed relatively small effects of water saturation, but effects were significant for HDPy organoclays. The maximum interlayer space of the HDPy organoclay at 20.7% <em>f</em><sub><em>OC</em></sub> expanded 3-fold (+22.3 Å) upon hydration, which is attributed to a substantial rearrangement of the pyridinium headgroup. All HDPy organoclays with <em>f</em><sub><em>OC</em></sub> > 20% experienced a notable increase in the alkyl tail conformational ordering upon hydration, becoming fully solid-like, even as negligible interlayer expansion occurred at the highest loadings. At high HDPy-loading water saturation would likely restrict sorption of contaminants relative to what might be expected based on dry properties, due to the energetic barrier of cavity formation in the more solid-like interlayer phase. This work provides evidence from three types of organoclays that water-saturated organoclay properties can differ substantially from those of dry organoclays. Characterization of organoclays under water-saturated conditions that are relevant to contaminant sorption will facilitate our understanding and improvement of organoclay performance.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"247 \",\"pages\":\"Article 107188\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131723003757\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131723003757","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of water saturation on interlayer properties of HDTMA-, HDTMP-, and HDPy-modified montmorillonite organoclays
Surfactant-modified clay minerals, organoclays, are well-studied and used commercially for removing contaminants from water. Nevertheless, dry organoclay properties are typically used to understand and predict contaminant sorption. In this work, the effects of water saturation on two properties important to contaminant sorption were examined: organoclay interlayer space and surfactant alkyl tail conformational ordering. Montmorillonite was modified to 0.25–3.0 CEC using three surfactants: hexadecyltrimethylammonium (HDTMA), hexadecylpyridinium (HDPy), and hexadecyltrimethylphosphonium (HDTMP). At low surfactant-loadings (< 1 CEC and < 15% fOC), water saturation expanded the maximum organoclay interlayer by 4–8 Å, depending on the surfactant and its loading but had little effect on surfactant tail conformational ordering. At low surfactant loadings, water saturation likely promotes contaminant sorption relative to expectations based on dry organoclay properties, particularly for larger contaminants, due to a relaxation of the physical constraints of the interlayer. At higher surfactant loadings, HDTMA and HDTMP organoclays showed relatively small effects of water saturation, but effects were significant for HDPy organoclays. The maximum interlayer space of the HDPy organoclay at 20.7% fOC expanded 3-fold (+22.3 Å) upon hydration, which is attributed to a substantial rearrangement of the pyridinium headgroup. All HDPy organoclays with fOC > 20% experienced a notable increase in the alkyl tail conformational ordering upon hydration, becoming fully solid-like, even as negligible interlayer expansion occurred at the highest loadings. At high HDPy-loading water saturation would likely restrict sorption of contaminants relative to what might be expected based on dry properties, due to the energetic barrier of cavity formation in the more solid-like interlayer phase. This work provides evidence from three types of organoclays that water-saturated organoclay properties can differ substantially from those of dry organoclays. Characterization of organoclays under water-saturated conditions that are relevant to contaminant sorption will facilitate our understanding and improvement of organoclay performance.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...