高密度和高离子电导率的涡轮层石墨烯的可扩展制造,用于紧凑型电容储能

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2023-11-01 DOI:10.1016/j.matt.2023.09.009
Congming Li , Xiangming Li , Wei Yu , Ronglin Xiao , Fei Huang , Hongmiao Tian , Chunhui Wang , Xiaoliang Chen , Jinyou Shao
{"title":"高密度和高离子电导率的涡轮层石墨烯的可扩展制造,用于紧凑型电容储能","authors":"Congming Li ,&nbsp;Xiangming Li ,&nbsp;Wei Yu ,&nbsp;Ronglin Xiao ,&nbsp;Fei Huang ,&nbsp;Hongmiao Tian ,&nbsp;Chunhui Wang ,&nbsp;Xiaoliang Chen ,&nbsp;Jinyou Shao","doi":"10.1016/j.matt.2023.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>Massively fabricating graphene with high density and high ion conductivity is critical but challenging for large-scale compact capacitive energy storage with high energy and power densities. Here, we demonstrate an efficient, kilogram-scale method for fabricating dense, turbostratic graphene by turbulent flow and isotropic capillary compression at violent boiling temperature, successfully resolving the trade-off between high density and high ion conductivity, as well as scale producing. Turbostratic graphene exhibits 5.4× enhanced ion conductivity, high density of up to 1.12 g cm<sup>−3</sup>, and volumetric capacitance of 234 F cm<sup>−3</sup><span>. Stack cells deliver an energy density of 83.2 Wh L</span><sup>−1</sup> and power density of 14 kW L<sup>−1</sup>, a milestone in capacitive energy storage. Moreover, orientation and porosity of turbostratic graphene can be tuned by precursors, demonstrating flexibility and viability for diverse applications. Furthermore, all-solid-state pouch cells are fabricated using ionic gel electrolyte, exhibiting multiple optional outputs and being leakage free at bending and folding states.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 11","pages":"Pages 4032-4049"},"PeriodicalIF":17.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable fabrication of turbostratic graphene with high density and high ion conductivity for compact capacitive energy storage\",\"authors\":\"Congming Li ,&nbsp;Xiangming Li ,&nbsp;Wei Yu ,&nbsp;Ronglin Xiao ,&nbsp;Fei Huang ,&nbsp;Hongmiao Tian ,&nbsp;Chunhui Wang ,&nbsp;Xiaoliang Chen ,&nbsp;Jinyou Shao\",\"doi\":\"10.1016/j.matt.2023.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Massively fabricating graphene with high density and high ion conductivity is critical but challenging for large-scale compact capacitive energy storage with high energy and power densities. Here, we demonstrate an efficient, kilogram-scale method for fabricating dense, turbostratic graphene by turbulent flow and isotropic capillary compression at violent boiling temperature, successfully resolving the trade-off between high density and high ion conductivity, as well as scale producing. Turbostratic graphene exhibits 5.4× enhanced ion conductivity, high density of up to 1.12 g cm<sup>−3</sup>, and volumetric capacitance of 234 F cm<sup>−3</sup><span>. Stack cells deliver an energy density of 83.2 Wh L</span><sup>−1</sup> and power density of 14 kW L<sup>−1</sup>, a milestone in capacitive energy storage. Moreover, orientation and porosity of turbostratic graphene can be tuned by precursors, demonstrating flexibility and viability for diverse applications. Furthermore, all-solid-state pouch cells are fabricated using ionic gel electrolyte, exhibiting multiple optional outputs and being leakage free at bending and folding states.</p></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"6 11\",\"pages\":\"Pages 4032-4049\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238523004642\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523004642","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大规模制造具有高密度和高离子电导率的石墨烯对于具有高能量和功率密度的大规模紧凑型电容储能器来说是关键但具有挑战性的。在这里,我们展示了一种在剧烈沸腾温度下通过湍流和各向同性毛细管压缩制备致密涡轮层石墨烯的有效千克级方法,成功解决了高密度和高离子电导率之间的权衡,以及规模生产。涡轮层石墨烯表现出5.4倍的离子导电性增强,高密度高达1.12 g cm−3,体积电容为234 F cm−3。堆叠电池的能量密度为83.2 Wh L−1,功率密度为14 kW L−1。这是电容储能领域的一个里程碑。此外,涡轮层石墨烯的取向和孔隙率可以通过前体进行调节,证明了其在各种应用中的灵活性和可行性。此外,所有固态袋状电池都是使用离子凝胶电解质制造的,表现出多种可选输出,并且在弯曲和折叠状态下无泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable fabrication of turbostratic graphene with high density and high ion conductivity for compact capacitive energy storage

Massively fabricating graphene with high density and high ion conductivity is critical but challenging for large-scale compact capacitive energy storage with high energy and power densities. Here, we demonstrate an efficient, kilogram-scale method for fabricating dense, turbostratic graphene by turbulent flow and isotropic capillary compression at violent boiling temperature, successfully resolving the trade-off between high density and high ion conductivity, as well as scale producing. Turbostratic graphene exhibits 5.4× enhanced ion conductivity, high density of up to 1.12 g cm−3, and volumetric capacitance of 234 F cm−3. Stack cells deliver an energy density of 83.2 Wh L−1 and power density of 14 kW L−1, a milestone in capacitive energy storage. Moreover, orientation and porosity of turbostratic graphene can be tuned by precursors, demonstrating flexibility and viability for diverse applications. Furthermore, all-solid-state pouch cells are fabricated using ionic gel electrolyte, exhibiting multiple optional outputs and being leakage free at bending and folding states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1