Lifei He , Yuyan Zhang , Yuefang Wei , Yaohang Cai , Jing Zhang , Peng Wang
{"title":"一种用于稳定高效钙钛矿太阳能电池的螺旋烯基半导体聚合物","authors":"Lifei He , Yuyan Zhang , Yuefang Wei , Yaohang Cai , Jing Zhang , Peng Wang","doi":"10.1016/j.matt.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The relentless pursuit of higher efficiencies in perovskite solar cells relies on the use of spiro-OMeTAD as a hole transport material, resulting in an impressive efficiency record of 25.7%. However, these high-efficiency cells have proven vulnerable to harsh heat conditions at 85°C. Here, we employed direct arylation </span>polycondensation<span> to efficiently synthesize a semiconducting polymer (p-O5H-E-POZ-E), the main chain of which consists of a strategic alternation of oxa[5]helicene, 3,4-ethylenedioxythiophene, phenoxazine, and 3,4-ethylenedioxythiophene. The air-doped composite of p-O5H-E-POZ-E and lithium bis(trifluoromethanesulfonyl)imide exhibits a room temperature conductivity of 75 μS cm</span></span><sup>−1</sup><span> and an exceptional glass-transition temperature of 187°C. Compared to spiro-OMeTAD, p-O5H-E-POZ-E demonstrates a comparable highest occupied molecular orbital energy level for efficient hole extraction while exhibiting enhanced elastic modulus<span> and fracture strength and reduced water permeation in its composite film. Using p-O5H-E-POZ-E in the hole transport layer, we demonstrate perovskite solar cells with an average efficiency of 24.9% and thermostability at 85°C.</span></span></p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 11","pages":"Pages 4013-4031"},"PeriodicalIF":17.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A helicene-based semiconducting polymer for stable and efficient perovskite solar cells\",\"authors\":\"Lifei He , Yuyan Zhang , Yuefang Wei , Yaohang Cai , Jing Zhang , Peng Wang\",\"doi\":\"10.1016/j.matt.2023.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The relentless pursuit of higher efficiencies in perovskite solar cells relies on the use of spiro-OMeTAD as a hole transport material, resulting in an impressive efficiency record of 25.7%. However, these high-efficiency cells have proven vulnerable to harsh heat conditions at 85°C. Here, we employed direct arylation </span>polycondensation<span> to efficiently synthesize a semiconducting polymer (p-O5H-E-POZ-E), the main chain of which consists of a strategic alternation of oxa[5]helicene, 3,4-ethylenedioxythiophene, phenoxazine, and 3,4-ethylenedioxythiophene. The air-doped composite of p-O5H-E-POZ-E and lithium bis(trifluoromethanesulfonyl)imide exhibits a room temperature conductivity of 75 μS cm</span></span><sup>−1</sup><span> and an exceptional glass-transition temperature of 187°C. Compared to spiro-OMeTAD, p-O5H-E-POZ-E demonstrates a comparable highest occupied molecular orbital energy level for efficient hole extraction while exhibiting enhanced elastic modulus<span> and fracture strength and reduced water permeation in its composite film. Using p-O5H-E-POZ-E in the hole transport layer, we demonstrate perovskite solar cells with an average efficiency of 24.9% and thermostability at 85°C.</span></span></p></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"6 11\",\"pages\":\"Pages 4013-4031\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238523004630\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523004630","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A helicene-based semiconducting polymer for stable and efficient perovskite solar cells
The relentless pursuit of higher efficiencies in perovskite solar cells relies on the use of spiro-OMeTAD as a hole transport material, resulting in an impressive efficiency record of 25.7%. However, these high-efficiency cells have proven vulnerable to harsh heat conditions at 85°C. Here, we employed direct arylation polycondensation to efficiently synthesize a semiconducting polymer (p-O5H-E-POZ-E), the main chain of which consists of a strategic alternation of oxa[5]helicene, 3,4-ethylenedioxythiophene, phenoxazine, and 3,4-ethylenedioxythiophene. The air-doped composite of p-O5H-E-POZ-E and lithium bis(trifluoromethanesulfonyl)imide exhibits a room temperature conductivity of 75 μS cm−1 and an exceptional glass-transition temperature of 187°C. Compared to spiro-OMeTAD, p-O5H-E-POZ-E demonstrates a comparable highest occupied molecular orbital energy level for efficient hole extraction while exhibiting enhanced elastic modulus and fracture strength and reduced water permeation in its composite film. Using p-O5H-E-POZ-E in the hole transport layer, we demonstrate perovskite solar cells with an average efficiency of 24.9% and thermostability at 85°C.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.