Martin Kroupa , Thomas Campbell-Ricketts , Stuart P. George , Amir A. Bahadori , Lawrence S. Pinsky
{"title":"Timepix像素探测器在国际空间站探测到粒子雨","authors":"Martin Kroupa , Thomas Campbell-Ricketts , Stuart P. George , Amir A. Bahadori , Lawrence S. Pinsky","doi":"10.1016/j.lssr.2023.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>We detect regular particle showers in several compact pixel detectors, distributed over the International Space Station. These showers are caused by high energy galactic cosmic rays, with energies often in the 10 s of TeV or higher. We survey the frequency of these events, their dependence on location on ISS, and their independence of the location of ISS, on its orbit. The Timepix detectors used allow individual particle tracks to be resolved, providing a possibility to perform physical analysis of shower events, which we demonstrate. In terms of radiation dosimetry, these showers indicate certain possible limitations of traditional dosimetric measures, in that (a) the dose measured in small sensor may be less than that received in a larger distribution of matter, such as a human and (b) the spatial and temporal extent of these events represents a regime of poorly documented biological response.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Particle showers detected on ISS in Timepix pixel detectors\",\"authors\":\"Martin Kroupa , Thomas Campbell-Ricketts , Stuart P. George , Amir A. Bahadori , Lawrence S. Pinsky\",\"doi\":\"10.1016/j.lssr.2023.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We detect regular particle showers in several compact pixel detectors, distributed over the International Space Station. These showers are caused by high energy galactic cosmic rays, with energies often in the 10 s of TeV or higher. We survey the frequency of these events, their dependence on location on ISS, and their independence of the location of ISS, on its orbit. The Timepix detectors used allow individual particle tracks to be resolved, providing a possibility to perform physical analysis of shower events, which we demonstrate. In terms of radiation dosimetry, these showers indicate certain possible limitations of traditional dosimetric measures, in that (a) the dose measured in small sensor may be less than that received in a larger distribution of matter, such as a human and (b) the spatial and temporal extent of these events represents a regime of poorly documented biological response.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214552423000184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552423000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Particle showers detected on ISS in Timepix pixel detectors
We detect regular particle showers in several compact pixel detectors, distributed over the International Space Station. These showers are caused by high energy galactic cosmic rays, with energies often in the 10 s of TeV or higher. We survey the frequency of these events, their dependence on location on ISS, and their independence of the location of ISS, on its orbit. The Timepix detectors used allow individual particle tracks to be resolved, providing a possibility to perform physical analysis of shower events, which we demonstrate. In terms of radiation dosimetry, these showers indicate certain possible limitations of traditional dosimetric measures, in that (a) the dose measured in small sensor may be less than that received in a larger distribution of matter, such as a human and (b) the spatial and temporal extent of these events represents a regime of poorly documented biological response.