Hong-Wei Zhao , Li-Xiang Li , Huai-Yang Zuo , Di Qu , Han Zhang , Lin Tao , Cheng-Guo Sun , Dong-Ying Ju , Bai-Gang An
{"title":"以钴离子交换的Y沸石为模板,在低温下大规模合成三维有序微孔碳","authors":"Hong-Wei Zhao , Li-Xiang Li , Huai-Yang Zuo , Di Qu , Han Zhang , Lin Tao , Cheng-Guo Sun , Dong-Ying Ju , Bai-Gang An","doi":"10.1016/S1872-5805(23)60776-0","DOIUrl":null,"url":null,"abstract":"<div><p>Zeolite-templated carbons (ZTCs) have a unique three-dimensional (3D) ordered microporous structure and an extra-large surface area, and have excellent properties in adsorption and energy storage. Unfortunately, the lack of efficient synthesis strategies and the difficulty of doing this on a large-scale have seriously limited their development. We have developed a large-scale simple production route using a relatively low synthesis temperature and direct acetylene chemical vapor deposition (CVD) using Co ion-exchanged zeolite Y (CoY) as the template. The Co<sup>2+</sup> confined in the zeolite acts as Lewis acid sites to catalyze the pyrolysis of acetylene through the d-π coordination effect, making carbon deposition occur selectively inside the zeolite at 400 °C rather than on the external surface. By systematically investigating the CVD temperature and time, the optimum conditions of 8 h deposition at 400 °C produces an excellent 3D ordered-microporous structure and outstanding structure parameters (3 000 m<sup>2</sup> g<sup>−1</sup>, 1.33 cm<sup>3</sup> g<sup>−1</sup>). Its CO<sub>2</sub> adsorption capacity and selectivity are 2.78 mmol g<sup>−1</sup> (25 °C, 100 kPa) and 98, respectively. This simple CVD process allows the synthesis of high-quality ZTCs on a large scale at a low cost.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 5","pages":"Pages 861-874"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template\",\"authors\":\"Hong-Wei Zhao , Li-Xiang Li , Huai-Yang Zuo , Di Qu , Han Zhang , Lin Tao , Cheng-Guo Sun , Dong-Ying Ju , Bai-Gang An\",\"doi\":\"10.1016/S1872-5805(23)60776-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zeolite-templated carbons (ZTCs) have a unique three-dimensional (3D) ordered microporous structure and an extra-large surface area, and have excellent properties in adsorption and energy storage. Unfortunately, the lack of efficient synthesis strategies and the difficulty of doing this on a large-scale have seriously limited their development. We have developed a large-scale simple production route using a relatively low synthesis temperature and direct acetylene chemical vapor deposition (CVD) using Co ion-exchanged zeolite Y (CoY) as the template. The Co<sup>2+</sup> confined in the zeolite acts as Lewis acid sites to catalyze the pyrolysis of acetylene through the d-π coordination effect, making carbon deposition occur selectively inside the zeolite at 400 °C rather than on the external surface. By systematically investigating the CVD temperature and time, the optimum conditions of 8 h deposition at 400 °C produces an excellent 3D ordered-microporous structure and outstanding structure parameters (3 000 m<sup>2</sup> g<sup>−1</sup>, 1.33 cm<sup>3</sup> g<sup>−1</sup>). Its CO<sub>2</sub> adsorption capacity and selectivity are 2.78 mmol g<sup>−1</sup> (25 °C, 100 kPa) and 98, respectively. This simple CVD process allows the synthesis of high-quality ZTCs on a large scale at a low cost.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"38 5\",\"pages\":\"Pages 861-874\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580523607760\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607760","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template
Zeolite-templated carbons (ZTCs) have a unique three-dimensional (3D) ordered microporous structure and an extra-large surface area, and have excellent properties in adsorption and energy storage. Unfortunately, the lack of efficient synthesis strategies and the difficulty of doing this on a large-scale have seriously limited their development. We have developed a large-scale simple production route using a relatively low synthesis temperature and direct acetylene chemical vapor deposition (CVD) using Co ion-exchanged zeolite Y (CoY) as the template. The Co2+ confined in the zeolite acts as Lewis acid sites to catalyze the pyrolysis of acetylene through the d-π coordination effect, making carbon deposition occur selectively inside the zeolite at 400 °C rather than on the external surface. By systematically investigating the CVD temperature and time, the optimum conditions of 8 h deposition at 400 °C produces an excellent 3D ordered-microporous structure and outstanding structure parameters (3 000 m2 g−1, 1.33 cm3 g−1). Its CO2 adsorption capacity and selectivity are 2.78 mmol g−1 (25 °C, 100 kPa) and 98, respectively. This simple CVD process allows the synthesis of high-quality ZTCs on a large scale at a low cost.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.