Tai-zhen YAO , Yun-lei AN , Hai-ling YU , Tie-jun LIN , Fei YU , Liang-shu ZHONG
{"title":"钌基费托合成烯烃催化剂的负载效应","authors":"Tai-zhen YAO , Yun-lei AN , Hai-ling YU , Tie-jun LIN , Fei YU , Liang-shu ZHONG","doi":"10.1016/S1872-5813(23)60351-2","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of supports (CeO<sub>2</sub>, ZrO<sub>2</sub>, MnO<sub>2</sub>, SiO<sub>2</sub> and active carbon) on the structure and catalytic performance of Ru-based catalysts for Fischer-Tropsch synthesis to olefins (FTO) were investigated. It was found that the intrinsic characteristics of supports and the metal-support interaction (MSI) would greatly influence the catalytic performance. The catalytic activity followed the order: Ru/SiO<sub>2</sub> > Ru/ZrO<sub>2</sub> > Ru/MnO<sub>2</sub> > Ru/AC > Ru/CeO<sub>2</sub>. As far as olefins selectivity was concerned, both Ru/SiO<sub>2</sub> and Ru/MnO<sub>2</sub> possessed high selectivity to olefins (>70%), while olefins selectivity for Ru/ZrO<sub>2</sub> was the lowest (29.9%). Ru/SiO<sub>2</sub> exhibited the appropriate Ru nanoparticles size (~ 5 nm) with highest activity due to the relatively low MSI between Ru and SiO<sub>2</sub>. Both Ru/AC and Ru/MnO<sub>2</sub> presented low CO conversion with Ru nanoparticles size of 1–3 nm. Stronger olefins secondary hydrogenation capacity led to the significantly decreased olefins selectivity for Ru/AC and Ru/ZrO<sub>2</sub>. In addition, partial Ru species might be encapsulated by reducible CeO<sub>2</sub> layer for Ru/CeO<sub>2</sub> due to strong MSI effects, leading to the lowest activity.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 10","pages":"Pages 1400-1410"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins\",\"authors\":\"Tai-zhen YAO , Yun-lei AN , Hai-ling YU , Tie-jun LIN , Fei YU , Liang-shu ZHONG\",\"doi\":\"10.1016/S1872-5813(23)60351-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of supports (CeO<sub>2</sub>, ZrO<sub>2</sub>, MnO<sub>2</sub>, SiO<sub>2</sub> and active carbon) on the structure and catalytic performance of Ru-based catalysts for Fischer-Tropsch synthesis to olefins (FTO) were investigated. It was found that the intrinsic characteristics of supports and the metal-support interaction (MSI) would greatly influence the catalytic performance. The catalytic activity followed the order: Ru/SiO<sub>2</sub> > Ru/ZrO<sub>2</sub> > Ru/MnO<sub>2</sub> > Ru/AC > Ru/CeO<sub>2</sub>. As far as olefins selectivity was concerned, both Ru/SiO<sub>2</sub> and Ru/MnO<sub>2</sub> possessed high selectivity to olefins (>70%), while olefins selectivity for Ru/ZrO<sub>2</sub> was the lowest (29.9%). Ru/SiO<sub>2</sub> exhibited the appropriate Ru nanoparticles size (~ 5 nm) with highest activity due to the relatively low MSI between Ru and SiO<sub>2</sub>. Both Ru/AC and Ru/MnO<sub>2</sub> presented low CO conversion with Ru nanoparticles size of 1–3 nm. Stronger olefins secondary hydrogenation capacity led to the significantly decreased olefins selectivity for Ru/AC and Ru/ZrO<sub>2</sub>. In addition, partial Ru species might be encapsulated by reducible CeO<sub>2</sub> layer for Ru/CeO<sub>2</sub> due to strong MSI effects, leading to the lowest activity.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"51 10\",\"pages\":\"Pages 1400-1410\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581323603512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins
The effects of supports (CeO2, ZrO2, MnO2, SiO2 and active carbon) on the structure and catalytic performance of Ru-based catalysts for Fischer-Tropsch synthesis to olefins (FTO) were investigated. It was found that the intrinsic characteristics of supports and the metal-support interaction (MSI) would greatly influence the catalytic performance. The catalytic activity followed the order: Ru/SiO2 > Ru/ZrO2 > Ru/MnO2 > Ru/AC > Ru/CeO2. As far as olefins selectivity was concerned, both Ru/SiO2 and Ru/MnO2 possessed high selectivity to olefins (>70%), while olefins selectivity for Ru/ZrO2 was the lowest (29.9%). Ru/SiO2 exhibited the appropriate Ru nanoparticles size (~ 5 nm) with highest activity due to the relatively low MSI between Ru and SiO2. Both Ru/AC and Ru/MnO2 presented low CO conversion with Ru nanoparticles size of 1–3 nm. Stronger olefins secondary hydrogenation capacity led to the significantly decreased olefins selectivity for Ru/AC and Ru/ZrO2. In addition, partial Ru species might be encapsulated by reducible CeO2 layer for Ru/CeO2 due to strong MSI effects, leading to the lowest activity.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.