{"title":"Hadoop在交通大数据中的应用概述","authors":"Changxi Ma , Mingxi Zhao , Yongpeng Zhao","doi":"10.1016/j.jtte.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>As an open-source cloud computing platform, Hadoop is extensively employed in a variety of sectors because of its high dependability, high scalability, and considerable benefits in processing and analyzing massive amounts of data. Consequently, to derive valuable insights from transportation big data, it is essential to leverage the Hadoop big data platform for analysis and mining. To summarize the latest research progress on the application of Hadoop to transportation big data, we conducted a comprehensive review of 98 relevant articles published from 2012 to the present. Firstly, a bibliometric analysis was performed using VOSviewer software to identify the evolution trend of keywords. Secondly, we introduced the core components of Hadoop. Subsequently, we systematically reviewed the 98 articles, identified the latest research progress, and classified the main application scenarios of Hadoop and its optimization framework. Based on our analysis, we identified the research gaps and future work in this area. Our review of the available research highlights that Hadoop has played a significant role in transportation big data research over the past decade. Specifically, the focus has been on transportation infrastructure monitoring, taxi operation management, travel feature analysis, traffic flow prediction, transportation big data analysis platform, traffic event monitoring and status discrimination, license plate recognition, and the shortest path. Additionally, the optimization framework of Hadoop has been studied in two main areas: the optimization of the computational model of Hadoop and the optimization of Hadoop combined with Spark. Several research results have been achieved in the field of transportation big data. However, there is less systematic research on the core technology of Hadoop, and the breadth and depth of the integration development of Hadoop and transportation big data are not sufficient. In the future, it is suggested that Hadoop may be combined with other big data frameworks such as Storm and Flink that process real-time data sources to improve the real-time processing and analysis of transportation big data. Simultaneously, the research on multi-source heterogeneous transportation big data is still a key focus. Improving existing big data technology to enable the analysis and even data compression of transportation big data can lead to new breakthroughs for intelligent transportation.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of Hadoop applications in transportation big data\",\"authors\":\"Changxi Ma , Mingxi Zhao , Yongpeng Zhao\",\"doi\":\"10.1016/j.jtte.2023.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an open-source cloud computing platform, Hadoop is extensively employed in a variety of sectors because of its high dependability, high scalability, and considerable benefits in processing and analyzing massive amounts of data. Consequently, to derive valuable insights from transportation big data, it is essential to leverage the Hadoop big data platform for analysis and mining. To summarize the latest research progress on the application of Hadoop to transportation big data, we conducted a comprehensive review of 98 relevant articles published from 2012 to the present. Firstly, a bibliometric analysis was performed using VOSviewer software to identify the evolution trend of keywords. Secondly, we introduced the core components of Hadoop. Subsequently, we systematically reviewed the 98 articles, identified the latest research progress, and classified the main application scenarios of Hadoop and its optimization framework. Based on our analysis, we identified the research gaps and future work in this area. Our review of the available research highlights that Hadoop has played a significant role in transportation big data research over the past decade. Specifically, the focus has been on transportation infrastructure monitoring, taxi operation management, travel feature analysis, traffic flow prediction, transportation big data analysis platform, traffic event monitoring and status discrimination, license plate recognition, and the shortest path. Additionally, the optimization framework of Hadoop has been studied in two main areas: the optimization of the computational model of Hadoop and the optimization of Hadoop combined with Spark. Several research results have been achieved in the field of transportation big data. However, there is less systematic research on the core technology of Hadoop, and the breadth and depth of the integration development of Hadoop and transportation big data are not sufficient. In the future, it is suggested that Hadoop may be combined with other big data frameworks such as Storm and Flink that process real-time data sources to improve the real-time processing and analysis of transportation big data. Simultaneously, the research on multi-source heterogeneous transportation big data is still a key focus. Improving existing big data technology to enable the analysis and even data compression of transportation big data can lead to new breakthroughs for intelligent transportation.</p></div>\",\"PeriodicalId\":47239,\"journal\":{\"name\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095756423001009\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756423001009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An overview of Hadoop applications in transportation big data
As an open-source cloud computing platform, Hadoop is extensively employed in a variety of sectors because of its high dependability, high scalability, and considerable benefits in processing and analyzing massive amounts of data. Consequently, to derive valuable insights from transportation big data, it is essential to leverage the Hadoop big data platform for analysis and mining. To summarize the latest research progress on the application of Hadoop to transportation big data, we conducted a comprehensive review of 98 relevant articles published from 2012 to the present. Firstly, a bibliometric analysis was performed using VOSviewer software to identify the evolution trend of keywords. Secondly, we introduced the core components of Hadoop. Subsequently, we systematically reviewed the 98 articles, identified the latest research progress, and classified the main application scenarios of Hadoop and its optimization framework. Based on our analysis, we identified the research gaps and future work in this area. Our review of the available research highlights that Hadoop has played a significant role in transportation big data research over the past decade. Specifically, the focus has been on transportation infrastructure monitoring, taxi operation management, travel feature analysis, traffic flow prediction, transportation big data analysis platform, traffic event monitoring and status discrimination, license plate recognition, and the shortest path. Additionally, the optimization framework of Hadoop has been studied in two main areas: the optimization of the computational model of Hadoop and the optimization of Hadoop combined with Spark. Several research results have been achieved in the field of transportation big data. However, there is less systematic research on the core technology of Hadoop, and the breadth and depth of the integration development of Hadoop and transportation big data are not sufficient. In the future, it is suggested that Hadoop may be combined with other big data frameworks such as Storm and Flink that process real-time data sources to improve the real-time processing and analysis of transportation big data. Simultaneously, the research on multi-source heterogeneous transportation big data is still a key focus. Improving existing big data technology to enable the analysis and even data compression of transportation big data can lead to new breakthroughs for intelligent transportation.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.