经济因素对美国房地产市场中位价和售价的影响

Durga Vaidynathan , Parthajit Kayal , Moinak Maiti
{"title":"经济因素对美国房地产市场中位价和售价的影响","authors":"Durga Vaidynathan ,&nbsp;Parthajit Kayal ,&nbsp;Moinak Maiti","doi":"10.1016/j.dsm.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of key economic factors on the median list price and median selling price in the U.S. housing market. Key economic factors such as interest rates, unemployment rates, inflation rates, real gross domestic product, money supply, mortgage rate, Standard &amp; Poor’s (S&amp;P) 500, and government expenditure are investigated to understand their relationships with housing prices. Conventional econometric models are typically used for housing market analysis; however, advancements in data science and machine learning allow these relationships to be examined more accurately. This study employs a decision tree regressor, k-nearest neighbors, random forest, and gradient boosting to enhance analysis accuracy and feature selection, thus enriching literature pertaining to machine learning in the housing market domain. The significance of housing market data as an indicator of economic growth is emphasized, and its effect on the overall economy, consumer spending, investment patterns, and financial stability is discussed. By utilizing a robust dataset and performing rigorous preprocessing, this study aims to provide valuable insights for policymakers, investors, and individuals involved in the housing sector.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of economic factors on median list and selling prices in the U.S. housing market\",\"authors\":\"Durga Vaidynathan ,&nbsp;Parthajit Kayal ,&nbsp;Moinak Maiti\",\"doi\":\"10.1016/j.dsm.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the effects of key economic factors on the median list price and median selling price in the U.S. housing market. Key economic factors such as interest rates, unemployment rates, inflation rates, real gross domestic product, money supply, mortgage rate, Standard &amp; Poor’s (S&amp;P) 500, and government expenditure are investigated to understand their relationships with housing prices. Conventional econometric models are typically used for housing market analysis; however, advancements in data science and machine learning allow these relationships to be examined more accurately. This study employs a decision tree regressor, k-nearest neighbors, random forest, and gradient boosting to enhance analysis accuracy and feature selection, thus enriching literature pertaining to machine learning in the housing market domain. The significance of housing market data as an indicator of economic growth is emphasized, and its effect on the overall economy, consumer spending, investment patterns, and financial stability is discussed. By utilizing a robust dataset and performing rigorous preprocessing, this study aims to provide valuable insights for policymakers, investors, and individuals involved in the housing sector.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了关键经济因素对美国住房市场标价中值和售价中值的影响。关键经济因素,如利率、失业率、通货膨胀率、实际国内生产总值、货币供应量、抵押贷款利率、标准普尔;调查了标准普尔500指数和政府支出,以了解它们与房价的关系。传统的计量经济模型通常用于住房市场分析;然而,数据科学和机器学习的进步使这些关系能够得到更准确的检验。本研究采用决策树回归、k近邻、随机森林和梯度增强来提高分析精度和特征选择,从而丰富了住房市场领域机器学习的相关文献。强调了住房市场数据作为经济增长指标的重要性,并讨论了其对整体经济、消费者支出、投资模式和金融稳定的影响。通过利用强大的数据集并进行严格的预处理,本研究旨在为住房行业的决策者、投资者和个人提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of economic factors on median list and selling prices in the U.S. housing market

This study investigates the effects of key economic factors on the median list price and median selling price in the U.S. housing market. Key economic factors such as interest rates, unemployment rates, inflation rates, real gross domestic product, money supply, mortgage rate, Standard & Poor’s (S&P) 500, and government expenditure are investigated to understand their relationships with housing prices. Conventional econometric models are typically used for housing market analysis; however, advancements in data science and machine learning allow these relationships to be examined more accurately. This study employs a decision tree regressor, k-nearest neighbors, random forest, and gradient boosting to enhance analysis accuracy and feature selection, thus enriching literature pertaining to machine learning in the housing market domain. The significance of housing market data as an indicator of economic growth is emphasized, and its effect on the overall economy, consumer spending, investment patterns, and financial stability is discussed. By utilizing a robust dataset and performing rigorous preprocessing, this study aims to provide valuable insights for policymakers, investors, and individuals involved in the housing sector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of IoT- and AI-based computing disease detection approaches Forecast Uncertainties Real-Time Data-Driven Compensation Scheme for Optimal Storage Control Dual-market quantitative trading: The dynamics of liquidity and turnover in financial markets A Model for Predicting Dropout of Higher Education Students Value Realization of Intelligent Emergency Management: Research Framework from Technology Enabling to Value Creation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1