Dimitrios P. Kallifronas, Pervez Ahmed, James C. Massey, Midhat Talibi, Andrea Ducci, Ramanarayanan Balachandran, Nedunchezhian Swaminathan
{"title":"预混合旋转火焰中火焰描述函数的缩放","authors":"Dimitrios P. Kallifronas, Pervez Ahmed, James C. Massey, Midhat Talibi, Andrea Ducci, Ramanarayanan Balachandran, Nedunchezhian Swaminathan","doi":"10.1007/s10494-023-00458-7","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the response of swirling flames subjected to acoustic perturbations poses significant challenges due to the complex nature of the flow. In this work, the effect of swirl number on the Flame Describing Function (FDF) is explored through a computational study of four bluff-body stabilised premixed flames with swirl numbers ranging between 0.44 and 0.97 and at forcing amplitudes of 7% and 25% of the mean bulk velocity. The LES model used for the simulations is validated by comparing two of those flames to experiments. The comparison is observed to be good with the computations capturing the unforced flow structure, flame height and FDF behaviour. It is found that changes in the swirl number can affect the location of the minima and maxima of the FDF gain in the frequency space. These locations are not affected by changes in the forcing amplitude, but the gain difference between the minima and the maxima is reduced as the forcing amplitude is increased. It is then attempted to scale the FDF using Strouhal numbers based on two different flame length scales. A length scale based on the axial height of the maximum heat release rate per unit length leads to a good collapse of the FDF gain curves. However, it is also observed that flow instabilities present in the flow can affect the FDF scaling leading to an imperfect collapse.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"111 3","pages":"929 - 951"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00458-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Scaling of Flame Describing Functions in Premixed Swirling Flames\",\"authors\":\"Dimitrios P. Kallifronas, Pervez Ahmed, James C. Massey, Midhat Talibi, Andrea Ducci, Ramanarayanan Balachandran, Nedunchezhian Swaminathan\",\"doi\":\"10.1007/s10494-023-00458-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting the response of swirling flames subjected to acoustic perturbations poses significant challenges due to the complex nature of the flow. In this work, the effect of swirl number on the Flame Describing Function (FDF) is explored through a computational study of four bluff-body stabilised premixed flames with swirl numbers ranging between 0.44 and 0.97 and at forcing amplitudes of 7% and 25% of the mean bulk velocity. The LES model used for the simulations is validated by comparing two of those flames to experiments. The comparison is observed to be good with the computations capturing the unforced flow structure, flame height and FDF behaviour. It is found that changes in the swirl number can affect the location of the minima and maxima of the FDF gain in the frequency space. These locations are not affected by changes in the forcing amplitude, but the gain difference between the minima and the maxima is reduced as the forcing amplitude is increased. It is then attempted to scale the FDF using Strouhal numbers based on two different flame length scales. A length scale based on the axial height of the maximum heat release rate per unit length leads to a good collapse of the FDF gain curves. However, it is also observed that flow instabilities present in the flow can affect the FDF scaling leading to an imperfect collapse.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"111 3\",\"pages\":\"929 - 951\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-023-00458-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00458-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00458-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Scaling of Flame Describing Functions in Premixed Swirling Flames
Predicting the response of swirling flames subjected to acoustic perturbations poses significant challenges due to the complex nature of the flow. In this work, the effect of swirl number on the Flame Describing Function (FDF) is explored through a computational study of four bluff-body stabilised premixed flames with swirl numbers ranging between 0.44 and 0.97 and at forcing amplitudes of 7% and 25% of the mean bulk velocity. The LES model used for the simulations is validated by comparing two of those flames to experiments. The comparison is observed to be good with the computations capturing the unforced flow structure, flame height and FDF behaviour. It is found that changes in the swirl number can affect the location of the minima and maxima of the FDF gain in the frequency space. These locations are not affected by changes in the forcing amplitude, but the gain difference between the minima and the maxima is reduced as the forcing amplitude is increased. It is then attempted to scale the FDF using Strouhal numbers based on two different flame length scales. A length scale based on the axial height of the maximum heat release rate per unit length leads to a good collapse of the FDF gain curves. However, it is also observed that flow instabilities present in the flow can affect the FDF scaling leading to an imperfect collapse.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.