含金属颗粒聚合物基涂层的光学性能:颗粒形状和粘结剂的影响

IF 2.3 4区 材料科学 Q2 Chemistry Journal of Coatings Technology and Research Pub Date : 2023-04-24 DOI:10.1007/s11998-023-00766-7
Kuilong Song, Ming Xie, Qing Ai
{"title":"含金属颗粒聚合物基涂层的光学性能:颗粒形状和粘结剂的影响","authors":"Kuilong Song,&nbsp;Ming Xie,&nbsp;Qing Ai","doi":"10.1007/s11998-023-00766-7","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer-based coatings containing metallic microparticles are a kind of functional material with effective spectral selectivity. The spectral radiative transfer model of polymer-based coatings is built based on geometrical optics, and the spectral radiative characteristics of the coatings were investigated by Monte Carlo ray-tracing method. The coatings consist of aluminum particles with different shapes as fillers and four kinds of polymer resins as binders, respectively. After verifying the reliability of the method, the effect of particle shape and binder on the infrared emission properties in the range of 8–14 μm is systematically investigated. The results demonstrate that adding flake particles into the coating can obtain lowest infrared emissivity, which is at most 86.79% lower than the coating containing spherical particles when the volume fraction is 30%. The mean emissivity of Al/acrylic resin, Al/polyetherimide (PEI), Al/polymethyl methacrylate, and Al/polystyrene (PS) composite coatings is 0.46, 0.48, 0.41, and 0.22, respectively. Al/PS composite coating has the minimum mean infrared emissivity among these four kinds of polymer-based coatings, which is 54.2% lower than Al/PEI composite coating. The method proposed in this work will provide theoretical guidance for experimental research.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 5","pages":"1611 - 1619"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical properties of polymer-based coatings containing metallic particles: effect of particle shape and binder\",\"authors\":\"Kuilong Song,&nbsp;Ming Xie,&nbsp;Qing Ai\",\"doi\":\"10.1007/s11998-023-00766-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer-based coatings containing metallic microparticles are a kind of functional material with effective spectral selectivity. The spectral radiative transfer model of polymer-based coatings is built based on geometrical optics, and the spectral radiative characteristics of the coatings were investigated by Monte Carlo ray-tracing method. The coatings consist of aluminum particles with different shapes as fillers and four kinds of polymer resins as binders, respectively. After verifying the reliability of the method, the effect of particle shape and binder on the infrared emission properties in the range of 8–14 μm is systematically investigated. The results demonstrate that adding flake particles into the coating can obtain lowest infrared emissivity, which is at most 86.79% lower than the coating containing spherical particles when the volume fraction is 30%. The mean emissivity of Al/acrylic resin, Al/polyetherimide (PEI), Al/polymethyl methacrylate, and Al/polystyrene (PS) composite coatings is 0.46, 0.48, 0.41, and 0.22, respectively. Al/PS composite coating has the minimum mean infrared emissivity among these four kinds of polymer-based coatings, which is 54.2% lower than Al/PEI composite coating. The method proposed in this work will provide theoretical guidance for experimental research.</p></div>\",\"PeriodicalId\":48804,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"20 5\",\"pages\":\"1611 - 1619\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-023-00766-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00766-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

含有金属微粒的聚合物基涂层是一种具有有效光谱选择性的功能材料。基于几何光学建立了聚合物基涂层的光谱辐射传递模型,采用蒙特卡罗射线示踪方法研究了涂层的光谱辐射特性。该涂层分别由不同形状的铝颗粒作为填料和四种聚合物树脂作为粘合剂组成。在验证了该方法的可靠性后,系统地研究了颗粒形状和粘结剂对8 ~ 14 μm范围内红外发射性能的影响。结果表明:当涂层体积分数为30%时,片状颗粒的红外发射率比球形颗粒的红外发射率低86.79%;Al/丙烯酸树脂、Al/聚醚酰亚胺(PEI)、Al/聚甲基丙烯酸甲酯和Al/聚苯乙烯(PS)复合涂层的平均发射率分别为0.46、0.48、0.41和0.22。在四种聚合物基涂料中,Al/PS复合涂料的平均红外发射率最小,比Al/PEI复合涂料低54.2%。本文提出的方法将为实验研究提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical properties of polymer-based coatings containing metallic particles: effect of particle shape and binder

Polymer-based coatings containing metallic microparticles are a kind of functional material with effective spectral selectivity. The spectral radiative transfer model of polymer-based coatings is built based on geometrical optics, and the spectral radiative characteristics of the coatings were investigated by Monte Carlo ray-tracing method. The coatings consist of aluminum particles with different shapes as fillers and four kinds of polymer resins as binders, respectively. After verifying the reliability of the method, the effect of particle shape and binder on the infrared emission properties in the range of 8–14 μm is systematically investigated. The results demonstrate that adding flake particles into the coating can obtain lowest infrared emissivity, which is at most 86.79% lower than the coating containing spherical particles when the volume fraction is 30%. The mean emissivity of Al/acrylic resin, Al/polyetherimide (PEI), Al/polymethyl methacrylate, and Al/polystyrene (PS) composite coatings is 0.46, 0.48, 0.41, and 0.22, respectively. Al/PS composite coating has the minimum mean infrared emissivity among these four kinds of polymer-based coatings, which is 54.2% lower than Al/PEI composite coating. The method proposed in this work will provide theoretical guidance for experimental research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research CHEMISTRY, APPLIED-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
4.40
自引率
8.70%
发文量
0
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
期刊最新文献
A parametric distribution model of electrostatic spray rotating bell and application for automobile painting Homogeneous dispersion of cellulose/graphite oxide nanofibers in water-based urushiol coatings with improved mechanical properties and corrosion resistance Temporal variations of surface roughness and thickness of polymer-coated quartz sand Effect of boron nitride modified by sodium tripolyphosphate on the corrosion resistance of waterborne epoxy coating Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1