介绍eNoC -一个简单的,基于excel的工具,用于改进对混合物的贡献者数量(NoC)的分配

Jim Thomson, David Moore, Tim Clayton
{"title":"介绍eNoC -一个简单的,基于excel的工具,用于改进对混合物的贡献者数量(NoC)的分配","authors":"Jim Thomson,&nbsp;David Moore,&nbsp;Tim Clayton","doi":"10.1016/j.fsigss.2022.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Assigning NoC in a mixed STR profile is an important preliminary step in computing a likelihood ratio (LR). A common metric is maximum allele count (MAC) whereby the locus exhibiting the largest number of alleles is used to set the NOC. This metric can be supplemented by considering total allele count (TAC) and locus allele count (LAC). TAC is the total number of alleles across all loci and is compared with probability distributions generated <em>in silico</em>. LAC works similarly, save that the probability distributions are generated at the locus level. Herein, we present a comparative analysis of these three metrics using a dataset of 10,000 of each of 2–7 person simulated ground truth mixtures. These datasets were used to generate parameter distributions for each NoC. This analysis showed LAC to be the most accurate single metric in all circumstances tested. We have developmentally validated an excel-based tool to automate calculations for use by operational caseworkers.</p></div>","PeriodicalId":56262,"journal":{"name":"Forensic Science International: Genetics Supplement Series","volume":"8 ","pages":"Pages 42-44"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1875176822000166/pdfft?md5=f5583095331ee6f80a07ca1222804fba&pid=1-s2.0-S1875176822000166-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Introducing eNoC – A simple, excel-based tool for improved assignment of the number of contributors (NoC) to a mixture\",\"authors\":\"Jim Thomson,&nbsp;David Moore,&nbsp;Tim Clayton\",\"doi\":\"10.1016/j.fsigss.2022.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Assigning NoC in a mixed STR profile is an important preliminary step in computing a likelihood ratio (LR). A common metric is maximum allele count (MAC) whereby the locus exhibiting the largest number of alleles is used to set the NOC. This metric can be supplemented by considering total allele count (TAC) and locus allele count (LAC). TAC is the total number of alleles across all loci and is compared with probability distributions generated <em>in silico</em>. LAC works similarly, save that the probability distributions are generated at the locus level. Herein, we present a comparative analysis of these three metrics using a dataset of 10,000 of each of 2–7 person simulated ground truth mixtures. These datasets were used to generate parameter distributions for each NoC. This analysis showed LAC to be the most accurate single metric in all circumstances tested. We have developmentally validated an excel-based tool to automate calculations for use by operational caseworkers.</p></div>\",\"PeriodicalId\":56262,\"journal\":{\"name\":\"Forensic Science International: Genetics Supplement Series\",\"volume\":\"8 \",\"pages\":\"Pages 42-44\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1875176822000166/pdfft?md5=f5583095331ee6f80a07ca1222804fba&pid=1-s2.0-S1875176822000166-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International: Genetics Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875176822000166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International: Genetics Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875176822000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在混合STR简档中分配NoC是计算似然比(LR)的重要预备步骤。一个常见的度量是最大等位基因计数(MAC),其中表现出最大等位蛋白数量的基因座用于设置NOC。这一指标可以通过考虑总等位基因计数(TAC)和位点等位基因数(LAC)来补充。TAC是所有基因座的等位基因总数,并与计算机生成的概率分布进行比较。LAC的工作原理类似,只是概率分布是在基因座水平上生成的。在此,我们对这三个指标进行了比较分析,使用了2–7人模拟的地面实况混合物中的每种混合物的10000个数据集。这些数据集用于生成每个NoC的参数分布。该分析表明,在所有测试情况下,LAC是最准确的单一指标。我们已经开发验证了一种基于excel的工具,用于自动化计算,供运营个案工作者使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing eNoC – A simple, excel-based tool for improved assignment of the number of contributors (NoC) to a mixture

Assigning NoC in a mixed STR profile is an important preliminary step in computing a likelihood ratio (LR). A common metric is maximum allele count (MAC) whereby the locus exhibiting the largest number of alleles is used to set the NOC. This metric can be supplemented by considering total allele count (TAC) and locus allele count (LAC). TAC is the total number of alleles across all loci and is compared with probability distributions generated in silico. LAC works similarly, save that the probability distributions are generated at the locus level. Herein, we present a comparative analysis of these three metrics using a dataset of 10,000 of each of 2–7 person simulated ground truth mixtures. These datasets were used to generate parameter distributions for each NoC. This analysis showed LAC to be the most accurate single metric in all circumstances tested. We have developmentally validated an excel-based tool to automate calculations for use by operational caseworkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic Science International: Genetics Supplement Series
Forensic Science International: Genetics Supplement Series Medicine-Pathology and Forensic Medicine
CiteScore
0.40
自引率
0.00%
发文量
122
审稿时长
25 days
期刊介绍: The Journal of Forensic Science International Genetics Supplement Series is the perfect publication vehicle for the proceedings of a scientific symposium, commissioned thematic issues, or for disseminating a selection of invited articles. The Forensic Science International Genetics Supplement Series is part of a duo of publications on forensic genetics, published by Elsevier on behalf of the International Society for Forensic Genetics.
期刊最新文献
The collapse of an Italian cemetery into the sea: Forensic approach to human remains identification Examination of pretreatment methods for DNA extraction from nails Evaluating probabilistic genotyping for low-pass DNA sequencing The ForAPP: Forensic Ancestry Prediction Pipeline for the interpretation of ancestry informative markers Whole-genome sequencing of degraded DNA for investigative genetic genealogy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1