考虑编队控制器约束的Leader轨迹规划方法

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2023-10-01 DOI:10.23919/JSEE.2023.000079
Yao Dongdong;Wang Xiaofang;Lin Hai;Wang Zhuping
{"title":"考虑编队控制器约束的Leader轨迹规划方法","authors":"Yao Dongdong;Wang Xiaofang;Lin Hai;Wang Zhuping","doi":"10.23919/JSEE.2023.000079","DOIUrl":null,"url":null,"abstract":"To ensure safe flight of multiple fixed-wing unmanned aerial vehicles (UAVs) formation, considering trajectory planning and formation control together, a leader trajectory planning method based on the sparse A* algorithm is introduced. Firstly, a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration, as well as the formation forming time, which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically. Next, considering the constraints caused by formation controller on trajectory planning such as the safe distance, turn angle and step length, as well as the constraint of formation shape, a leader trajectory planning method based on sparse A* algorithm is proposed. Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 5","pages":"1294-1308"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leader trajectory planning method considering constraints of formation controller\",\"authors\":\"Yao Dongdong;Wang Xiaofang;Lin Hai;Wang Zhuping\",\"doi\":\"10.23919/JSEE.2023.000079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure safe flight of multiple fixed-wing unmanned aerial vehicles (UAVs) formation, considering trajectory planning and formation control together, a leader trajectory planning method based on the sparse A* algorithm is introduced. Firstly, a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration, as well as the formation forming time, which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically. Next, considering the constraints caused by formation controller on trajectory planning such as the safe distance, turn angle and step length, as well as the constraint of formation shape, a leader trajectory planning method based on sparse A* algorithm is proposed. Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"34 5\",\"pages\":\"1294-1308\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10308767/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10308767/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了保证多架固定翼无人机编队的安全飞行,将轨迹规划和编队控制相结合,提出了一种基于稀疏a*算法的引导器轨迹规划方法。首先,设计了一种基于预定性能理论的编队控制器,用于控制瞬态和稳定的编队构型以及编队形成时间,不仅可以形成指定的编队构型,而且可以从理论上保证防撞和地形规避。其次,考虑到编队控制器对轨迹规划的约束,如安全距离、转弯角度和步长,以及编队形状的约束,提出了一种基于稀疏a*算法的先导轨迹规划方法。仿真结果表明,无人机编队无论保持编队还是遇到编队变换,都能以较短的轨迹安全抵达目的地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leader trajectory planning method considering constraints of formation controller
To ensure safe flight of multiple fixed-wing unmanned aerial vehicles (UAVs) formation, considering trajectory planning and formation control together, a leader trajectory planning method based on the sparse A* algorithm is introduced. Firstly, a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration, as well as the formation forming time, which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically. Next, considering the constraints caused by formation controller on trajectory planning such as the safe distance, turn angle and step length, as well as the constraint of formation shape, a leader trajectory planning method based on sparse A* algorithm is proposed. Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1