用卷积神经网络识别双模光学涡旋光束的叠加

L. G. Akhmetov, A. P. Porfirev, S. N. Khonina
{"title":"用卷积神经网络识别双模光学涡旋光束的叠加","authors":"L. G. Akhmetov,&nbsp;A. P. Porfirev,&nbsp;S. N. Khonina","doi":"10.3103/S1060992X23050028","DOIUrl":null,"url":null,"abstract":"<p>We investigate the efficiency of convolutional neural networks (CNNs) application for recognition of two-mode optical vortex (OV) beams superpositions. Unlike standard multiplexing, we associate information channels not with individual modes, but with pairs of modes with a given index difference which raises security of information transmission. At the first stage, we performed studies with a model dataset using standard image augmentation techniques for training CNNs (translation and rotation). Further, we use experimentally generated by phase spatial light modulator (SLM) intensity patterns for training the proposed neural networks. The achieved test accuracy of the CNNs trained on the experimentally generated dataset is 0.84. This value is comparable with the test accuracy for the modeling training dataset.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 1","pages":"S138 - S150"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of Two-Mode Optical Vortex Beams Superpositions Using Convolution Neural Networks\",\"authors\":\"L. G. Akhmetov,&nbsp;A. P. Porfirev,&nbsp;S. N. Khonina\",\"doi\":\"10.3103/S1060992X23050028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the efficiency of convolutional neural networks (CNNs) application for recognition of two-mode optical vortex (OV) beams superpositions. Unlike standard multiplexing, we associate information channels not with individual modes, but with pairs of modes with a given index difference which raises security of information transmission. At the first stage, we performed studies with a model dataset using standard image augmentation techniques for training CNNs (translation and rotation). Further, we use experimentally generated by phase spatial light modulator (SLM) intensity patterns for training the proposed neural networks. The achieved test accuracy of the CNNs trained on the experimentally generated dataset is 0.84. This value is comparable with the test accuracy for the modeling training dataset.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"32 1\",\"pages\":\"S138 - S150\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X23050028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23050028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了卷积神经网络(CNNs)应用于识别双模光学涡旋(OV)光束叠加的效率。与标准多路复用不同,我们将信息信道与单个模式相关联,而是与具有给定索引差的模式对相关联,这提高了信息传输的安全性。在第一阶段,我们使用标准图像增强技术对模型数据集进行了研究,以训练细胞神经网络(平移和旋转)。此外,我们使用相位空间光调制器(SLM)强度模式的实验生成来训练所提出的神经网络。在实验生成的数据集上训练的细胞神经网络的测试精度为0.84。该值与建模训练数据集的测试精度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of Two-Mode Optical Vortex Beams Superpositions Using Convolution Neural Networks

We investigate the efficiency of convolutional neural networks (CNNs) application for recognition of two-mode optical vortex (OV) beams superpositions. Unlike standard multiplexing, we associate information channels not with individual modes, but with pairs of modes with a given index difference which raises security of information transmission. At the first stage, we performed studies with a model dataset using standard image augmentation techniques for training CNNs (translation and rotation). Further, we use experimentally generated by phase spatial light modulator (SLM) intensity patterns for training the proposed neural networks. The achieved test accuracy of the CNNs trained on the experimentally generated dataset is 0.84. This value is comparable with the test accuracy for the modeling training dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
期刊最新文献
uSF: Learning Neural Semantic Field with Uncertainty Two Frequency-Division Demultiplexing Using Photonic Waveguides by the Presence of Two Geometric Defects Enhancement of Neural Network Performance with the Use of Two Novel Activation Functions: modExp and modExpm Automated Lightweight Descriptor Generation for Hyperspectral Image Analysis Accuracy and Performance Analysis of the 1/t Wang-Landau Algorithm in the Joint Density of States Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1