波米亚力学的本体论只能存在于粒子中吗?PBR定理说不

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Foundations of Physics Pub Date : 2023-11-06 DOI:10.1007/s10701-023-00731-9
Shan Gao
{"title":"波米亚力学的本体论只能存在于粒子中吗?PBR定理说不","authors":"Shan Gao","doi":"10.1007/s10701-023-00731-9","DOIUrl":null,"url":null,"abstract":"<div><p>The meaning of the wave function is an important unresolved issue in Bohmian mechanics. On the one hand, according to the nomological view, the wave function of the universe or the universal wave function is nomological, like a law of nature. On the other hand, the PBR theorem proves that the wave function in quantum mechanics or the effective wave function in Bohmian mechanics is ontic, representing the ontic state of a physical system in the universe. It is usually thought that the nomological view of the universal wave function is compatible with the ontic view of the effective wave function, and thus the PBR theorem has no implications for the nomological view. In this paper, I argue that this is not the case, and these two views are in fact incompatible. This means that if the effective wave function is ontic as the PBR theorem proves, then the universal wave function cannot be nomological, and the ontology of Bohmian mechanics cannot consist only in particles. This incompatibility result holds true not only for Humeanism and dispositionalism but also for primitivism about laws of nature, which attributes a fundamental ontic role to the universal wave function. Moreover, I argue that although the nomological view can be held by rejecting one key assumption of the PBR theorem, the rejection will lead to serious problems, such as that the results of measurements and their probabilities cannot be explained in ontology in Bohmian mechanics. Finally, I briefly discuss three <span>\\(\\psi\\)</span>-ontologies, namely a physical field in a fundamental high-dimensional space, a multi-field in three-dimensional space, and RDMP (Random Discontinuous Motion of Particles) in three-dimensional space, and argue that the RDMP ontology can answer the objections to the <span>\\(\\psi\\)</span>-ontology raised by the proponents of the nomological view.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can the Ontology of Bohmian Mechanics Consists Only in Particles? The PBR Theorem Says No\",\"authors\":\"Shan Gao\",\"doi\":\"10.1007/s10701-023-00731-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The meaning of the wave function is an important unresolved issue in Bohmian mechanics. On the one hand, according to the nomological view, the wave function of the universe or the universal wave function is nomological, like a law of nature. On the other hand, the PBR theorem proves that the wave function in quantum mechanics or the effective wave function in Bohmian mechanics is ontic, representing the ontic state of a physical system in the universe. It is usually thought that the nomological view of the universal wave function is compatible with the ontic view of the effective wave function, and thus the PBR theorem has no implications for the nomological view. In this paper, I argue that this is not the case, and these two views are in fact incompatible. This means that if the effective wave function is ontic as the PBR theorem proves, then the universal wave function cannot be nomological, and the ontology of Bohmian mechanics cannot consist only in particles. This incompatibility result holds true not only for Humeanism and dispositionalism but also for primitivism about laws of nature, which attributes a fundamental ontic role to the universal wave function. Moreover, I argue that although the nomological view can be held by rejecting one key assumption of the PBR theorem, the rejection will lead to serious problems, such as that the results of measurements and their probabilities cannot be explained in ontology in Bohmian mechanics. Finally, I briefly discuss three <span>\\\\(\\\\psi\\\\)</span>-ontologies, namely a physical field in a fundamental high-dimensional space, a multi-field in three-dimensional space, and RDMP (Random Discontinuous Motion of Particles) in three-dimensional space, and argue that the RDMP ontology can answer the objections to the <span>\\\\(\\\\psi\\\\)</span>-ontology raised by the proponents of the nomological view.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00731-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00731-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

波函数的意义是波面力学中一个尚未解决的重要问题。一方面,根据法理观点,宇宙的波函数或普遍波函数是法理的,就像自然定律一样。另一方面,PBR定理证明了量子力学中的波函数或波米亚力学中的有效波函数是本体的,代表了宇宙中物理系统的本体状态。人们通常认为普遍波函数的法理观点与有效波函数的本体观点是相容的,因此PBR定理对法理观点没有任何意义。在本文中,我认为事实并非如此,这两种观点实际上是不相容的。这意味着,如果有效波函数像PBR定理所证明的那样是本体的,那么普适波函数就不可能是诺模学的,波米亚力学的本体也不可能只存在于粒子中。这种不相容的结果不仅适用于休谟主义和处置主义,也适用于关于自然规律的原始主义,它将根本的本体作用归因于普遍的波函数。此外,我认为,尽管可以通过拒绝PBR定理的一个关键假设来持有法理观点,但拒绝会导致严重的问题,例如在波米亚力学中,测量结果及其概率无法用本体论来解释。最后,我简要讨论了三个本体论,即基本高维空间中的物理场、三维空间中的多场和三维空间中粒子的随机不连续运动,并认为RDMP本体论可以回答诺模学观点支持者对本体论的反对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can the Ontology of Bohmian Mechanics Consists Only in Particles? The PBR Theorem Says No

The meaning of the wave function is an important unresolved issue in Bohmian mechanics. On the one hand, according to the nomological view, the wave function of the universe or the universal wave function is nomological, like a law of nature. On the other hand, the PBR theorem proves that the wave function in quantum mechanics or the effective wave function in Bohmian mechanics is ontic, representing the ontic state of a physical system in the universe. It is usually thought that the nomological view of the universal wave function is compatible with the ontic view of the effective wave function, and thus the PBR theorem has no implications for the nomological view. In this paper, I argue that this is not the case, and these two views are in fact incompatible. This means that if the effective wave function is ontic as the PBR theorem proves, then the universal wave function cannot be nomological, and the ontology of Bohmian mechanics cannot consist only in particles. This incompatibility result holds true not only for Humeanism and dispositionalism but also for primitivism about laws of nature, which attributes a fundamental ontic role to the universal wave function. Moreover, I argue that although the nomological view can be held by rejecting one key assumption of the PBR theorem, the rejection will lead to serious problems, such as that the results of measurements and their probabilities cannot be explained in ontology in Bohmian mechanics. Finally, I briefly discuss three \(\psi\)-ontologies, namely a physical field in a fundamental high-dimensional space, a multi-field in three-dimensional space, and RDMP (Random Discontinuous Motion of Particles) in three-dimensional space, and argue that the RDMP ontology can answer the objections to the \(\psi\)-ontology raised by the proponents of the nomological view.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
期刊最新文献
Revisiting the Charged Harmonic Oscillator in a Uniform Electric Field Self-Normalizing Path Integrals Exploring the Interplay Between Wave Function Realism and Gauge Symmetry Interpretations in Quantum Mechanics Anti-foundationalist Coherentism as an Ontology for Relational Quantum Mechanics sQFT: An Autonomous Explanation of the Interactions of Quantum Particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1