基于力指数的鱼式气球机器人胸鳍运动与鳍形关系比较

Pub Date : 2023-10-10 DOI:10.1007/s10015-023-00903-w
Naoki Kagiya, Masafumi Uchida
{"title":"基于力指数的鱼式气球机器人胸鳍运动与鳍形关系比较","authors":"Naoki Kagiya,&nbsp;Masafumi Uchida","doi":"10.1007/s10015-023-00903-w","DOIUrl":null,"url":null,"abstract":"<div><p>Balloon robots consist of a balloon body, which is filled with helium to provide buoyancy. In particular, fish-type balloon robots (FBRs) incorporate caudal- and pectoral-fin motions as their propulsion mechanism, which can be combined to realize complex motions. However, the propulsive force generated by the pectoral-fin motion is less, which is a disadvantage, and it is necessary to increase the propulsive force. Since the weight of FBR is limited, it is crucial to select a fin that can generate larger propulsive force at the same weight. In this study, pectoral fins with different shapes and materials are developed, and the propulsive force generated by various fin movements is measured. Finally, the results are compared and discussed relative to the influence of shape and softness on the propulsion.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the relationship between pectoral-fin movement and fin shape based on force index for fish-type balloon robot\",\"authors\":\"Naoki Kagiya,&nbsp;Masafumi Uchida\",\"doi\":\"10.1007/s10015-023-00903-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Balloon robots consist of a balloon body, which is filled with helium to provide buoyancy. In particular, fish-type balloon robots (FBRs) incorporate caudal- and pectoral-fin motions as their propulsion mechanism, which can be combined to realize complex motions. However, the propulsive force generated by the pectoral-fin motion is less, which is a disadvantage, and it is necessary to increase the propulsive force. Since the weight of FBR is limited, it is crucial to select a fin that can generate larger propulsive force at the same weight. In this study, pectoral fins with different shapes and materials are developed, and the propulsive force generated by various fin movements is measured. Finally, the results are compared and discussed relative to the influence of shape and softness on the propulsion.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-023-00903-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00903-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气球机器人由气球主体组成,气球主体充满氦气以提供浮力。特别是,鱼类气球机器人(FBR)将尾鳍和胸鳍运动作为其推进机制,可以将其结合起来实现复杂的运动。然而,胸鳍运动产生的推进力较小,这是一个缺点,有必要增加推进力。由于FBR的重量是有限的,因此选择在相同重量下能够产生更大推进力的鳍是至关重要的。在这项研究中,开发了不同形状和材料的胸鳍,并测量了各种鳍运动产生的推进力。最后,就形状和柔软度对推进的影响对结果进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Comparison of the relationship between pectoral-fin movement and fin shape based on force index for fish-type balloon robot

Balloon robots consist of a balloon body, which is filled with helium to provide buoyancy. In particular, fish-type balloon robots (FBRs) incorporate caudal- and pectoral-fin motions as their propulsion mechanism, which can be combined to realize complex motions. However, the propulsive force generated by the pectoral-fin motion is less, which is a disadvantage, and it is necessary to increase the propulsive force. Since the weight of FBR is limited, it is crucial to select a fin that can generate larger propulsive force at the same weight. In this study, pectoral fins with different shapes and materials are developed, and the propulsive force generated by various fin movements is measured. Finally, the results are compared and discussed relative to the influence of shape and softness on the propulsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1