{"title":"封闭温度下聚乙烯醇包覆超顺磁性氧化铁纳米粒子磁性的增强研究","authors":"Bandana Gogoi, Upamanyu Das","doi":"10.1007/s11106-023-00368-3","DOIUrl":null,"url":null,"abstract":"<div><div><p>Superparamagnetic iron oxide nanoparticles (SPIONs) coated with the synthetic hydrophilic biocompatible polymer polyvinyl alcohol were synthesized using the aqueous method. Static and dynamic magnetization processes were investigated for surface-modified SPIONs by analyzing the magnetization study at constant and varying magnetic fields. The magnetization on the applied magnetic field (M–H) and the magnetization dependent on temperature (M–T) were investigated. The temperature dependence of the complex susceptibility of SPIONs was investigated by measuring the in-phase (natural) and out-of-phase (imaginary) components of the susceptibility value at a frequency of 10 Hz and a very low magnetizing field. The XRD study shows diffraction peaks consistent with the magnetite (Fe<sub>3</sub>O<sub>4</sub>) phase of SPIONPs. FTIR, DSC, and TGA studies confirm the functional groups and stability of the coated nanoparticles. The magnetizing field cycle study at various constant temperatures (10, 100, and 300 K) shows the high magnetization value of polyvinyl alcohol-coated SPIONs with superparamagnetic states at and above 300 K. The effect of interparticle interaction on blocking temperature has been interpreted from FC/ZFC curves drawn at different DC magnetizing field values by varying temperature between 10 and 300 K.</p></div></div>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 1-2","pages":"41 - 57"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Study of Magnetic Properties of Polyvinyl Alcohol-Coated Superparamagnetic Iron Oxide Nanoparticles Below Blocking Temperatures\",\"authors\":\"Bandana Gogoi, Upamanyu Das\",\"doi\":\"10.1007/s11106-023-00368-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>Superparamagnetic iron oxide nanoparticles (SPIONs) coated with the synthetic hydrophilic biocompatible polymer polyvinyl alcohol were synthesized using the aqueous method. Static and dynamic magnetization processes were investigated for surface-modified SPIONs by analyzing the magnetization study at constant and varying magnetic fields. The magnetization on the applied magnetic field (M–H) and the magnetization dependent on temperature (M–T) were investigated. The temperature dependence of the complex susceptibility of SPIONs was investigated by measuring the in-phase (natural) and out-of-phase (imaginary) components of the susceptibility value at a frequency of 10 Hz and a very low magnetizing field. The XRD study shows diffraction peaks consistent with the magnetite (Fe<sub>3</sub>O<sub>4</sub>) phase of SPIONPs. FTIR, DSC, and TGA studies confirm the functional groups and stability of the coated nanoparticles. The magnetizing field cycle study at various constant temperatures (10, 100, and 300 K) shows the high magnetization value of polyvinyl alcohol-coated SPIONs with superparamagnetic states at and above 300 K. The effect of interparticle interaction on blocking temperature has been interpreted from FC/ZFC curves drawn at different DC magnetizing field values by varying temperature between 10 and 300 K.</p></div></div>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"62 1-2\",\"pages\":\"41 - 57\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-023-00368-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00368-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Enhanced Study of Magnetic Properties of Polyvinyl Alcohol-Coated Superparamagnetic Iron Oxide Nanoparticles Below Blocking Temperatures
Superparamagnetic iron oxide nanoparticles (SPIONs) coated with the synthetic hydrophilic biocompatible polymer polyvinyl alcohol were synthesized using the aqueous method. Static and dynamic magnetization processes were investigated for surface-modified SPIONs by analyzing the magnetization study at constant and varying magnetic fields. The magnetization on the applied magnetic field (M–H) and the magnetization dependent on temperature (M–T) were investigated. The temperature dependence of the complex susceptibility of SPIONs was investigated by measuring the in-phase (natural) and out-of-phase (imaginary) components of the susceptibility value at a frequency of 10 Hz and a very low magnetizing field. The XRD study shows diffraction peaks consistent with the magnetite (Fe3O4) phase of SPIONPs. FTIR, DSC, and TGA studies confirm the functional groups and stability of the coated nanoparticles. The magnetizing field cycle study at various constant temperatures (10, 100, and 300 K) shows the high magnetization value of polyvinyl alcohol-coated SPIONs with superparamagnetic states at and above 300 K. The effect of interparticle interaction on blocking temperature has been interpreted from FC/ZFC curves drawn at different DC magnetizing field values by varying temperature between 10 and 300 K.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.