{"title":"半空间亚音速蒸发的直接蒙特卡罗模拟","authors":"A. A. Morozov, E. Ya. Gatapova","doi":"10.1134/S0869864323030034","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling of processes with phase transition in confined spaces needs high-accuracy simulations with account for non-equilibrium. In the present paper, we use the direct simulation Monte Carlo method for describing evaporation into a vapor-filled half-space with a subsonic monoatomic gas flow. Two types of boundary conditions for open halfspace are considered: the iteration approach with consecutive calculation of temperature and pressure, and the approach with a fixed velocity. We compared these approaches for obtaining the accurate solution of the problem. The fixed-velocity approach provides a higher accuracy for the flow with a low Mach number. The calculated results are compared with a known solution of a model kinetic equation.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Monte Carlo simulation of subsonic evaporation into a half-space\",\"authors\":\"A. A. Morozov, E. Ya. Gatapova\",\"doi\":\"10.1134/S0869864323030034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling of processes with phase transition in confined spaces needs high-accuracy simulations with account for non-equilibrium. In the present paper, we use the direct simulation Monte Carlo method for describing evaporation into a vapor-filled half-space with a subsonic monoatomic gas flow. Two types of boundary conditions for open halfspace are considered: the iteration approach with consecutive calculation of temperature and pressure, and the approach with a fixed velocity. We compared these approaches for obtaining the accurate solution of the problem. The fixed-velocity approach provides a higher accuracy for the flow with a low Mach number. The calculated results are compared with a known solution of a model kinetic equation.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323030034\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323030034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Direct Monte Carlo simulation of subsonic evaporation into a half-space
Modeling of processes with phase transition in confined spaces needs high-accuracy simulations with account for non-equilibrium. In the present paper, we use the direct simulation Monte Carlo method for describing evaporation into a vapor-filled half-space with a subsonic monoatomic gas flow. Two types of boundary conditions for open halfspace are considered: the iteration approach with consecutive calculation of temperature and pressure, and the approach with a fixed velocity. We compared these approaches for obtaining the accurate solution of the problem. The fixed-velocity approach provides a higher accuracy for the flow with a low Mach number. The calculated results are compared with a known solution of a model kinetic equation.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.