{"title":"基于STT RAM的混合缓存中数据块分配和迁移的整数线性规划模型","authors":"Elyas Khajekarimi, Kamal Jamshidi, Abbas Vafaei","doi":"10.1049/iet-cdt.2019.0070","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Spin-transfer torque random access memory (STT-RAM) has emerged as an eminent choice for the larger on-chip caches due to high density, low static power consumption and scalability. However, this technology suffers from long latency and high energy consumption during a write operation. Hybrid caches alleviate these problems by incorporating a write-friendly memory technology such as static random access memory along with STT-RAM technology. The proper allocation of data blocks has a significant effect on both performance and energy consumption in the hybrid cache. In this study, the allocation and migration problem of data blocks in the hybrid cache is examined and then modelled using integer linear programming (ILP) formulations. The authors propose an ILP model with three different objective functions which include minimising access latency, minimising energy and minimising energy-delay product in the hybrid cache. Evaluations confirm that the proposed ILP model obtains better results in terms of energy consumption and performance compared to the existing hybrid cache architecture.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 3","pages":"97-106"},"PeriodicalIF":1.1000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0070","citationCount":"2","resultStr":"{\"title\":\"Integer linear programming model for allocation and migration of data blocks in the STT-RAM-based hybrid caches\",\"authors\":\"Elyas Khajekarimi, Kamal Jamshidi, Abbas Vafaei\",\"doi\":\"10.1049/iet-cdt.2019.0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Spin-transfer torque random access memory (STT-RAM) has emerged as an eminent choice for the larger on-chip caches due to high density, low static power consumption and scalability. However, this technology suffers from long latency and high energy consumption during a write operation. Hybrid caches alleviate these problems by incorporating a write-friendly memory technology such as static random access memory along with STT-RAM technology. The proper allocation of data blocks has a significant effect on both performance and energy consumption in the hybrid cache. In this study, the allocation and migration problem of data blocks in the hybrid cache is examined and then modelled using integer linear programming (ILP) formulations. The authors propose an ILP model with three different objective functions which include minimising access latency, minimising energy and minimising energy-delay product in the hybrid cache. Evaluations confirm that the proposed ILP model obtains better results in terms of energy consumption and performance compared to the existing hybrid cache architecture.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 3\",\"pages\":\"97-106\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0070\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0070\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0070","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Integer linear programming model for allocation and migration of data blocks in the STT-RAM-based hybrid caches
Spin-transfer torque random access memory (STT-RAM) has emerged as an eminent choice for the larger on-chip caches due to high density, low static power consumption and scalability. However, this technology suffers from long latency and high energy consumption during a write operation. Hybrid caches alleviate these problems by incorporating a write-friendly memory technology such as static random access memory along with STT-RAM technology. The proper allocation of data blocks has a significant effect on both performance and energy consumption in the hybrid cache. In this study, the allocation and migration problem of data blocks in the hybrid cache is examined and then modelled using integer linear programming (ILP) formulations. The authors propose an ILP model with three different objective functions which include minimising access latency, minimising energy and minimising energy-delay product in the hybrid cache. Evaluations confirm that the proposed ILP model obtains better results in terms of energy consumption and performance compared to the existing hybrid cache architecture.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.