{"title":"基于节点放电器和扭接晶体管的动态CMOS电路性能分析","authors":"Dhandapani Vaithiyanathan, Ravindra Kumar, Ashima Rai, Khushboo Sharma","doi":"10.1049/iet-cdt.2018.5045","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The incessant growth of devices such as mobile phones, digital cameras, and other portable electronic gadgets has led to a higher amount of research being dedicated to the low power digital and analogue circuits. In this study, a low power-delay-product (PDP) dynamic complementary metal oxide semiconductor (CMOS) circuit design using small swing domino logic with twist-connected transistors is proposed. An improvement in PDP can be achieved by using a node-discharger circuit in the conventional design. The conventional benchmark and modified circuits are implemented in 90 nm CMOS technology with different power supplies, i.e. 1.2, 1, and 0.9 V. Furthermore, a decrease in voltage level for logic ‘1’ and an increase in voltage level for logic ‘0’ is achieved while maintaining the logic threshold accordingly at half of the supply voltage. So, the output voltage swing is reduced and the unnecessary nodes of the pull down network get discharged in pre-charge phase, eventually leading to an improvement when compared with conventional design in overall PDP by 43.21 and 46.83% for two inverted two-input and three-input AND gate dynamic benchmarks, respectively, for a power supply of 1 V.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 3","pages":"107-113"},"PeriodicalIF":1.1000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2018.5045","citationCount":"3","resultStr":"{\"title\":\"Performance analysis of dynamic CMOS circuit based on node-discharger and twist-connected transistors\",\"authors\":\"Dhandapani Vaithiyanathan, Ravindra Kumar, Ashima Rai, Khushboo Sharma\",\"doi\":\"10.1049/iet-cdt.2018.5045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The incessant growth of devices such as mobile phones, digital cameras, and other portable electronic gadgets has led to a higher amount of research being dedicated to the low power digital and analogue circuits. In this study, a low power-delay-product (PDP) dynamic complementary metal oxide semiconductor (CMOS) circuit design using small swing domino logic with twist-connected transistors is proposed. An improvement in PDP can be achieved by using a node-discharger circuit in the conventional design. The conventional benchmark and modified circuits are implemented in 90 nm CMOS technology with different power supplies, i.e. 1.2, 1, and 0.9 V. Furthermore, a decrease in voltage level for logic ‘1’ and an increase in voltage level for logic ‘0’ is achieved while maintaining the logic threshold accordingly at half of the supply voltage. So, the output voltage swing is reduced and the unnecessary nodes of the pull down network get discharged in pre-charge phase, eventually leading to an improvement when compared with conventional design in overall PDP by 43.21 and 46.83% for two inverted two-input and three-input AND gate dynamic benchmarks, respectively, for a power supply of 1 V.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 3\",\"pages\":\"107-113\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2018.5045\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5045\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Performance analysis of dynamic CMOS circuit based on node-discharger and twist-connected transistors
The incessant growth of devices such as mobile phones, digital cameras, and other portable electronic gadgets has led to a higher amount of research being dedicated to the low power digital and analogue circuits. In this study, a low power-delay-product (PDP) dynamic complementary metal oxide semiconductor (CMOS) circuit design using small swing domino logic with twist-connected transistors is proposed. An improvement in PDP can be achieved by using a node-discharger circuit in the conventional design. The conventional benchmark and modified circuits are implemented in 90 nm CMOS technology with different power supplies, i.e. 1.2, 1, and 0.9 V. Furthermore, a decrease in voltage level for logic ‘1’ and an increase in voltage level for logic ‘0’ is achieved while maintaining the logic threshold accordingly at half of the supply voltage. So, the output voltage swing is reduced and the unnecessary nodes of the pull down network get discharged in pre-charge phase, eventually leading to an improvement when compared with conventional design in overall PDP by 43.21 and 46.83% for two inverted two-input and three-input AND gate dynamic benchmarks, respectively, for a power supply of 1 V.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.