{"title":"优化的HEVC编码器仅内部配置","authors":"Nejmeddine Bahri, Randa Khemiri","doi":"10.1049/iet-cdt.2019.0197","DOIUrl":null,"url":null,"abstract":"<div>\n <p>High-efficiency video coding (HEVC) is the latest video coding standard aimed to reduce the bitrate by half for the same video quality compared to H.264/AVC. This encoding performance makes HEVC more suitable for high-definition video applications. However, this performance is coupled with a high-computational complexity, which makes it hard to achieve real-time video encoding with a classic embedded processor. Multicore technology of programmable processors could be a very promising solution to overcome this computational complexity. Moreover, software optimisations by proposing fast algorithms for the most complex functions could also be an efficient solution to speed up the encoding process. In this context, this study presents a fast mode decision algorithm for the intra prediction module. This algorithm aims to reduce the number of intra prediction modes to be tested instead of performing a full intra mode search. Experimental results for all-Intra configuration show that the proposed fast intra mode decision allows saving up to 46.79% of the intra prediction time in average. Encoding performance in terms of video quality and bitrate is not significantly affected.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 6","pages":"256-262"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0197","citationCount":"4","resultStr":"{\"title\":\"Optimised HEVC encoder intra-only configuration\",\"authors\":\"Nejmeddine Bahri, Randa Khemiri\",\"doi\":\"10.1049/iet-cdt.2019.0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>High-efficiency video coding (HEVC) is the latest video coding standard aimed to reduce the bitrate by half for the same video quality compared to H.264/AVC. This encoding performance makes HEVC more suitable for high-definition video applications. However, this performance is coupled with a high-computational complexity, which makes it hard to achieve real-time video encoding with a classic embedded processor. Multicore technology of programmable processors could be a very promising solution to overcome this computational complexity. Moreover, software optimisations by proposing fast algorithms for the most complex functions could also be an efficient solution to speed up the encoding process. In this context, this study presents a fast mode decision algorithm for the intra prediction module. This algorithm aims to reduce the number of intra prediction modes to be tested instead of performing a full intra mode search. Experimental results for all-Intra configuration show that the proposed fast intra mode decision allows saving up to 46.79% of the intra prediction time in average. Encoding performance in terms of video quality and bitrate is not significantly affected.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 6\",\"pages\":\"256-262\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0197\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0197\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0197","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
High-efficiency video coding (HEVC) is the latest video coding standard aimed to reduce the bitrate by half for the same video quality compared to H.264/AVC. This encoding performance makes HEVC more suitable for high-definition video applications. However, this performance is coupled with a high-computational complexity, which makes it hard to achieve real-time video encoding with a classic embedded processor. Multicore technology of programmable processors could be a very promising solution to overcome this computational complexity. Moreover, software optimisations by proposing fast algorithms for the most complex functions could also be an efficient solution to speed up the encoding process. In this context, this study presents a fast mode decision algorithm for the intra prediction module. This algorithm aims to reduce the number of intra prediction modes to be tested instead of performing a full intra mode search. Experimental results for all-Intra configuration show that the proposed fast intra mode decision allows saving up to 46.79% of the intra prediction time in average. Encoding performance in terms of video quality and bitrate is not significantly affected.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.