{"title":"蘑菇中的含炔基化合物及其生物活性。","authors":"Ji-shuang Qi, Yingce Duan, Zhao-chen Li, Jin-ming Gao, Jianzhao Qi, Chengwei Liu","doi":"10.1007/s13659-023-00416-w","DOIUrl":null,"url":null,"abstract":"<div><p>Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636002/pdf/","citationCount":"0","resultStr":"{\"title\":\"The alkynyl-containing compounds from mushrooms and their biological activities\",\"authors\":\"Ji-shuang Qi, Yingce Duan, Zhao-chen Li, Jin-ming Gao, Jianzhao Qi, Chengwei Liu\",\"doi\":\"10.1007/s13659-023-00416-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":718,\"journal\":{\"name\":\"Natural Products and Bioprospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636002/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Products and Bioprospecting\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13659-023-00416-w\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-023-00416-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The alkynyl-containing compounds from mushrooms and their biological activities
Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.