双歧杆菌和乳酸杆菌利用不同低聚糖生长及其体外共培养特性。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Microbiology Pub Date : 2024-06-01 Epub Date: 2023-11-09 DOI:10.1007/s10123-023-00446-x
Yao Dong, Mei Han, Teng Fei, Huan Liu, Zhonghui Gai
{"title":"双歧杆菌和乳酸杆菌利用不同低聚糖生长及其体外共培养特性。","authors":"Yao Dong, Mei Han, Teng Fei, Huan Liu, Zhonghui Gai","doi":"10.1007/s10123-023-00446-x","DOIUrl":null,"url":null,"abstract":"<p><p>Various approaches have been used to study the relationship between prebiotics and probiotics. The utilization of different carbohydrates by probiotics depends on the biochemical properties of the enzymes and substrates required by the microbial strain. However, few studies have systematically analyzed the ability of probiotics to utilize different prebiotics. Here, we investigated the effects of prebiotics from different manufacturers on the proliferation of 13 strains of the Lactobacillus group and the genus Bifidobacterium co-cultured in vitro. Inulin, fructose-oligosaccharide (FOS), and galactose-oligosaccharide (GOS) had broad growth-promoting effects. FOS significantly promoted the proliferation of B. longum. When strains from Lactobacillus group and Bifidobacterium were co-cultured, FOS caused each strain to proliferate cooperatively. GOS was effectively used by L. rhamnosus and L. reuteri for energy and growth promotion. L. casei and L. paracasei fully metabolized inulin; these strains performed better than other strains from Lactobacillus group and Bifidobacterium. Media containing a mixture of oligosaccharides had stronger effects on the growth of B. animalis subsp. lactis, L. acidophilus, and L. rhamnosus than media containing single oligosaccharides. Thus, different oligosaccharides had different effects on the growth of probiotics, providing a scientific basis for the use of synbiotics in health and related fields.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilization of diverse oligosaccharides for growth by Bifidobacterium and Lactobacillus species and their in vitro co-cultivation characteristics.\",\"authors\":\"Yao Dong, Mei Han, Teng Fei, Huan Liu, Zhonghui Gai\",\"doi\":\"10.1007/s10123-023-00446-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various approaches have been used to study the relationship between prebiotics and probiotics. The utilization of different carbohydrates by probiotics depends on the biochemical properties of the enzymes and substrates required by the microbial strain. However, few studies have systematically analyzed the ability of probiotics to utilize different prebiotics. Here, we investigated the effects of prebiotics from different manufacturers on the proliferation of 13 strains of the Lactobacillus group and the genus Bifidobacterium co-cultured in vitro. Inulin, fructose-oligosaccharide (FOS), and galactose-oligosaccharide (GOS) had broad growth-promoting effects. FOS significantly promoted the proliferation of B. longum. When strains from Lactobacillus group and Bifidobacterium were co-cultured, FOS caused each strain to proliferate cooperatively. GOS was effectively used by L. rhamnosus and L. reuteri for energy and growth promotion. L. casei and L. paracasei fully metabolized inulin; these strains performed better than other strains from Lactobacillus group and Bifidobacterium. Media containing a mixture of oligosaccharides had stronger effects on the growth of B. animalis subsp. lactis, L. acidophilus, and L. rhamnosus than media containing single oligosaccharides. Thus, different oligosaccharides had different effects on the growth of probiotics, providing a scientific basis for the use of synbiotics in health and related fields.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-023-00446-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00446-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已经使用了各种方法来研究益生元和益生菌之间的关系。益生菌对不同碳水化合物的利用取决于微生物菌株所需的酶和底物的生化特性。然而,很少有研究系统地分析益生菌利用不同益生元的能力。在此,我们研究了来自不同制造商的益生元对体外共培养的13株乳酸杆菌组和双歧杆菌属菌株增殖的影响。菊粉、低聚果糖(FOS)和低聚半乳糖(GOS)具有广泛的促生长作用。FOS显著促进B.longum的增殖。当乳酸杆菌组和双歧杆菌的菌株共同培养时,FOS使每个菌株协同增殖。鼠李糖乳杆菌和路氏乳杆菌有效利用GOS促进能量和生长。干酪乳杆菌和副干酪乳杆菌完全代谢菊粉;这些菌株的表现优于来自乳酸杆菌组和双歧杆菌的其他菌株。含有低聚糖混合物的培养基对动物双歧杆菌亚种的生长有更强的影响。乳酸杆菌、嗜酸乳杆菌和鼠李糖乳杆菌。因此,不同的低聚糖对益生菌的生长有不同的影响,为合生元在健康及相关领域的应用提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of diverse oligosaccharides for growth by Bifidobacterium and Lactobacillus species and their in vitro co-cultivation characteristics.

Various approaches have been used to study the relationship between prebiotics and probiotics. The utilization of different carbohydrates by probiotics depends on the biochemical properties of the enzymes and substrates required by the microbial strain. However, few studies have systematically analyzed the ability of probiotics to utilize different prebiotics. Here, we investigated the effects of prebiotics from different manufacturers on the proliferation of 13 strains of the Lactobacillus group and the genus Bifidobacterium co-cultured in vitro. Inulin, fructose-oligosaccharide (FOS), and galactose-oligosaccharide (GOS) had broad growth-promoting effects. FOS significantly promoted the proliferation of B. longum. When strains from Lactobacillus group and Bifidobacterium were co-cultured, FOS caused each strain to proliferate cooperatively. GOS was effectively used by L. rhamnosus and L. reuteri for energy and growth promotion. L. casei and L. paracasei fully metabolized inulin; these strains performed better than other strains from Lactobacillus group and Bifidobacterium. Media containing a mixture of oligosaccharides had stronger effects on the growth of B. animalis subsp. lactis, L. acidophilus, and L. rhamnosus than media containing single oligosaccharides. Thus, different oligosaccharides had different effects on the growth of probiotics, providing a scientific basis for the use of synbiotics in health and related fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
期刊最新文献
Anise essential oil immobilized in chitosan microparticles: a novel bactericidal material for food protection. Screening and heterologous expression of an antimicrobial peptide SCAK33 with broad-spectrum antimicrobial activity resourced from sea cucumber proteome. Diterpenoids from Isodon serra with promising anti-MRSA activities. The accumulation of polysaccharides in Dendrobium officinale is closely related to rhizosphere bacteria. Role of fatty acids in modulating quorum sensing in Pseudomonas aeruginosa and Chromobacterium violaceum: an integrated experimental and computational analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1