{"title":"自动规划以查找替代错误跟踪","authors":"Rajib Lochan Jana, Soumyajit Dey, Arijit Mondal, Pallab Dasgupta","doi":"10.1049/iet-cdt.2019.0283","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Bug traces serve as references for patching a microprocessor design after a bug has been found. Unless the root cause of a bug has been detected and patched, variants of the bug may return through alternative bug traces, following a different sequence of micro-architectural events. To avoid such a situation, the verification engineer must think of every possible way in which the bug may return, which is a complex problem for a modern microprocessor. This study proposes a methodology which gleans high-level descriptions of the micro-architectural steps and uses them in an artificial Intelligence planning framework to find alternative pathways through which a bug may return. The plans are then translated to simulation test cases which explore these potential bug scenarios. The planning tool essentially automates the task of the verification engineer towards exploring possible alternative sequences of micro-architectural steps that may allow a bug to return. The proposed methodology is demonstrated in three case studies.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 6","pages":"322-335"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0283","citationCount":"1","resultStr":"{\"title\":\"Automated planning for finding alternative bug traces\",\"authors\":\"Rajib Lochan Jana, Soumyajit Dey, Arijit Mondal, Pallab Dasgupta\",\"doi\":\"10.1049/iet-cdt.2019.0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Bug traces serve as references for patching a microprocessor design after a bug has been found. Unless the root cause of a bug has been detected and patched, variants of the bug may return through alternative bug traces, following a different sequence of micro-architectural events. To avoid such a situation, the verification engineer must think of every possible way in which the bug may return, which is a complex problem for a modern microprocessor. This study proposes a methodology which gleans high-level descriptions of the micro-architectural steps and uses them in an artificial Intelligence planning framework to find alternative pathways through which a bug may return. The plans are then translated to simulation test cases which explore these potential bug scenarios. The planning tool essentially automates the task of the verification engineer towards exploring possible alternative sequences of micro-architectural steps that may allow a bug to return. The proposed methodology is demonstrated in three case studies.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 6\",\"pages\":\"322-335\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0283\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0283\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Automated planning for finding alternative bug traces
Bug traces serve as references for patching a microprocessor design after a bug has been found. Unless the root cause of a bug has been detected and patched, variants of the bug may return through alternative bug traces, following a different sequence of micro-architectural events. To avoid such a situation, the verification engineer must think of every possible way in which the bug may return, which is a complex problem for a modern microprocessor. This study proposes a methodology which gleans high-level descriptions of the micro-architectural steps and uses them in an artificial Intelligence planning framework to find alternative pathways through which a bug may return. The plans are then translated to simulation test cases which explore these potential bug scenarios. The planning tool essentially automates the task of the verification engineer towards exploring possible alternative sequences of micro-architectural steps that may allow a bug to return. The proposed methodology is demonstrated in three case studies.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.