{"title":"SRAM相邻纠错解码器的低复杂度错误位置检测块","authors":"Raj Kumar Maity, Sayan Tripathi, Jagannath Samanta, Jaydeb Bhaumik","doi":"10.1049/iet-cdt.2019.0268","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Multiple cell upsets (MCUs) caused by radiation is an important issue related to the reliability of embedded static random access memories (SRAMs). Multiple random and adjacent error correcting codes have been extensively employed for several years to protect stored data in SRAMs against MCUs. A compact and fast error correcting codec is desirable in most of these applications. In this study, simplified expressions for error location detection (ELD) block for single error correction-double error detection-double adjacent error correction (SEC-DED-DAEC) and single error correction-double error detection-triple adjacent error correction (SEC-DED-TAEC) decoders have been obtained by employing Karnaugh map. The conventional SEC-DED-DAEC and SEC-DED-TAEC decoders have been designed and implemented in both field-programmable gate array and ASIC platforms by considering these simplified ELD expressions. In FPGA platform, the proposed design for SEC-DED-DAEC and SEC-DED-TAEC decoders require 1.37–28.40% improvement in area and maximum 14.74% improvement in delay compared to existing designs. Whereas ASIC-based designs provide 2.20–26.81% reduction in area and 0.30–28.96% reduction in delay compared to existing related works. So the proposed design can be considered as an efficient alternative of traditional adjacent error correcting decoders in resource constraint applications.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 5","pages":"210-216"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2019.0268","citationCount":"10","resultStr":"{\"title\":\"Lower complexity error location detection block of adjacent error correcting decoder for SRAMs\",\"authors\":\"Raj Kumar Maity, Sayan Tripathi, Jagannath Samanta, Jaydeb Bhaumik\",\"doi\":\"10.1049/iet-cdt.2019.0268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Multiple cell upsets (MCUs) caused by radiation is an important issue related to the reliability of embedded static random access memories (SRAMs). Multiple random and adjacent error correcting codes have been extensively employed for several years to protect stored data in SRAMs against MCUs. A compact and fast error correcting codec is desirable in most of these applications. In this study, simplified expressions for error location detection (ELD) block for single error correction-double error detection-double adjacent error correction (SEC-DED-DAEC) and single error correction-double error detection-triple adjacent error correction (SEC-DED-TAEC) decoders have been obtained by employing Karnaugh map. The conventional SEC-DED-DAEC and SEC-DED-TAEC decoders have been designed and implemented in both field-programmable gate array and ASIC platforms by considering these simplified ELD expressions. In FPGA platform, the proposed design for SEC-DED-DAEC and SEC-DED-TAEC decoders require 1.37–28.40% improvement in area and maximum 14.74% improvement in delay compared to existing designs. Whereas ASIC-based designs provide 2.20–26.81% reduction in area and 0.30–28.96% reduction in delay compared to existing related works. So the proposed design can be considered as an efficient alternative of traditional adjacent error correcting decoders in resource constraint applications.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 5\",\"pages\":\"210-216\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-cdt.2019.0268\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0268\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0268","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Lower complexity error location detection block of adjacent error correcting decoder for SRAMs
Multiple cell upsets (MCUs) caused by radiation is an important issue related to the reliability of embedded static random access memories (SRAMs). Multiple random and adjacent error correcting codes have been extensively employed for several years to protect stored data in SRAMs against MCUs. A compact and fast error correcting codec is desirable in most of these applications. In this study, simplified expressions for error location detection (ELD) block for single error correction-double error detection-double adjacent error correction (SEC-DED-DAEC) and single error correction-double error detection-triple adjacent error correction (SEC-DED-TAEC) decoders have been obtained by employing Karnaugh map. The conventional SEC-DED-DAEC and SEC-DED-TAEC decoders have been designed and implemented in both field-programmable gate array and ASIC platforms by considering these simplified ELD expressions. In FPGA platform, the proposed design for SEC-DED-DAEC and SEC-DED-TAEC decoders require 1.37–28.40% improvement in area and maximum 14.74% improvement in delay compared to existing designs. Whereas ASIC-based designs provide 2.20–26.81% reduction in area and 0.30–28.96% reduction in delay compared to existing related works. So the proposed design can be considered as an efficient alternative of traditional adjacent error correcting decoders in resource constraint applications.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.