用于IEEE 802.15.4-g的MR-OFDM物理层的面积和功率高效可变长度快速傅立叶变换

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IET Computers and Digital Techniques Pub Date : 2020-04-23 DOI:10.1049/iet-cdt.2018.5260
Ganjikunta Ganesh Kumar, Subhendu K. Sahoo
{"title":"用于IEEE 802.15.4-g的MR-OFDM物理层的面积和功率高效可变长度快速傅立叶变换","authors":"Ganjikunta Ganesh Kumar,&nbsp;Subhendu K. Sahoo","doi":"10.1049/iet-cdt.2018.5260","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The authors present a novel 16/32/64/128-point single-path delay feedback pipeline fast Fourier transform (FFT) architecture targeting the multi-rate and multi-regional orthogonal frequency division multiplexing (MR-OFDM) physical layer of IEEE 802.15.4-g. The proposed FFT architecture employs a mixed-radix algorithm to significantly reduce the number of complex multipliers. It utilises a configurable complex constant multiplier structure instead of a fixed constant multiplier to efficiently conduct , , and twiddle factor multiplication. A hardware-sharing mechanism has also been formulated to reduce the memory space requirements of the proposed 16/32/64/128-point FFT computation scheme. The proposed design is implemented in Xilinx Virtex-5 and Altera's field-programmable gate array devices. For the computation of 128-point FFT, the proposed mixed-radix FFT architecture significantly reduces the hardware cost in comparison with existing FFT architecture. The proposed FFT architecture is also implemented by adopting the 90 nm complementary metal-oxide-semiconductor technology with a supply voltage of 1 V. Post-synthesis results reveal that the design is efficient in terms of gate count and power consumption, compared to earlier reported designs. The proposed variable-length FFT architecture gate count is 22.3K and consumes 3.832 mW, while the word-length is 12-bits and can be efficiently useful for the IEEE 802.15.4-g standard.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 5","pages":"193-200"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5260","citationCount":"1","resultStr":"{\"title\":\"Area and power-efficient variable-length fast Fourier transform for MR-OFDM physical layer of IEEE 802.15.4-g\",\"authors\":\"Ganjikunta Ganesh Kumar,&nbsp;Subhendu K. Sahoo\",\"doi\":\"10.1049/iet-cdt.2018.5260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The authors present a novel 16/32/64/128-point single-path delay feedback pipeline fast Fourier transform (FFT) architecture targeting the multi-rate and multi-regional orthogonal frequency division multiplexing (MR-OFDM) physical layer of IEEE 802.15.4-g. The proposed FFT architecture employs a mixed-radix algorithm to significantly reduce the number of complex multipliers. It utilises a configurable complex constant multiplier structure instead of a fixed constant multiplier to efficiently conduct , , and twiddle factor multiplication. A hardware-sharing mechanism has also been formulated to reduce the memory space requirements of the proposed 16/32/64/128-point FFT computation scheme. The proposed design is implemented in Xilinx Virtex-5 and Altera's field-programmable gate array devices. For the computation of 128-point FFT, the proposed mixed-radix FFT architecture significantly reduces the hardware cost in comparison with existing FFT architecture. The proposed FFT architecture is also implemented by adopting the 90 nm complementary metal-oxide-semiconductor technology with a supply voltage of 1 V. Post-synthesis results reveal that the design is efficient in terms of gate count and power consumption, compared to earlier reported designs. The proposed variable-length FFT architecture gate count is 22.3K and consumes 3.832 mW, while the word-length is 12-bits and can be efficiently useful for the IEEE 802.15.4-g standard.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 5\",\"pages\":\"193-200\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5260\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5260\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5260","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

针对IEEE 802.15.4-g的多速率、多区域正交频分复用(MR-OFDM)物理层,提出了一种新颖的16/32/64/128点单路径延迟反馈流水线快速傅立叶变换(FFT)架构。该架构采用混合基数算法,显著减少了复数乘法器的数量。它利用可配置的复杂常数乘法器结构而不是固定常数乘法器来有效地进行和旋转因子乘法。还制定了硬件共享机制,以减少所提出的16/32/64/128点FFT计算方案的存储器空间需求。所提出的设计在Xilinx Virtex-5和Altera的现场可编程门阵列器件中实现。对于128点FFT的计算,与现有的FFT架构相比,所提出的混合基数FFT架构显著降低了硬件成本。所提出的FFT架构还通过采用电源电压为1V的90nm互补金属氧化物半导体技术来实现。后合成结果表明,与早期报道的设计相比,该设计在栅极计数和功耗方面是有效的。所提出的可变长度FFT架构门计数为22.3K,消耗3.832mW,而字长为12位,可以有效地用于IEEE 802.15.4-g标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Area and power-efficient variable-length fast Fourier transform for MR-OFDM physical layer of IEEE 802.15.4-g

The authors present a novel 16/32/64/128-point single-path delay feedback pipeline fast Fourier transform (FFT) architecture targeting the multi-rate and multi-regional orthogonal frequency division multiplexing (MR-OFDM) physical layer of IEEE 802.15.4-g. The proposed FFT architecture employs a mixed-radix algorithm to significantly reduce the number of complex multipliers. It utilises a configurable complex constant multiplier structure instead of a fixed constant multiplier to efficiently conduct , , and twiddle factor multiplication. A hardware-sharing mechanism has also been formulated to reduce the memory space requirements of the proposed 16/32/64/128-point FFT computation scheme. The proposed design is implemented in Xilinx Virtex-5 and Altera's field-programmable gate array devices. For the computation of 128-point FFT, the proposed mixed-radix FFT architecture significantly reduces the hardware cost in comparison with existing FFT architecture. The proposed FFT architecture is also implemented by adopting the 90 nm complementary metal-oxide-semiconductor technology with a supply voltage of 1 V. Post-synthesis results reveal that the design is efficient in terms of gate count and power consumption, compared to earlier reported designs. The proposed variable-length FFT architecture gate count is 22.3K and consumes 3.832 mW, while the word-length is 12-bits and can be efficiently useful for the IEEE 802.15.4-g standard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
期刊最新文献
E-Commerce Logistics Software Package Tracking and Route Planning and Optimization System of Embedded Technology Based on the Intelligent Era A Configurable Accelerator for CNN-Based Remote Sensing Object Detection on FPGAs A FPGA Accelerator of Distributed A3C Algorithm with Optimal Resource Deployment An Efficient RTL Design for a Wearable Brain–Computer Interface Adaptive Shrink and Shard Architecture Design for Blockchain Storage Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1