{"title":"用于IEEE 802.15.4-g的MR-OFDM物理层的面积和功率高效可变长度快速傅立叶变换","authors":"Ganjikunta Ganesh Kumar, Subhendu K. Sahoo","doi":"10.1049/iet-cdt.2018.5260","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The authors present a novel 16/32/64/128-point single-path delay feedback pipeline fast Fourier transform (FFT) architecture targeting the multi-rate and multi-regional orthogonal frequency division multiplexing (MR-OFDM) physical layer of IEEE 802.15.4-g. The proposed FFT architecture employs a mixed-radix algorithm to significantly reduce the number of complex multipliers. It utilises a configurable complex constant multiplier structure instead of a fixed constant multiplier to efficiently conduct , , and twiddle factor multiplication. A hardware-sharing mechanism has also been formulated to reduce the memory space requirements of the proposed 16/32/64/128-point FFT computation scheme. The proposed design is implemented in Xilinx Virtex-5 and Altera's field-programmable gate array devices. For the computation of 128-point FFT, the proposed mixed-radix FFT architecture significantly reduces the hardware cost in comparison with existing FFT architecture. The proposed FFT architecture is also implemented by adopting the 90 nm complementary metal-oxide-semiconductor technology with a supply voltage of 1 V. Post-synthesis results reveal that the design is efficient in terms of gate count and power consumption, compared to earlier reported designs. The proposed variable-length FFT architecture gate count is 22.3K and consumes 3.832 mW, while the word-length is 12-bits and can be efficiently useful for the IEEE 802.15.4-g standard.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 5","pages":"193-200"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5260","citationCount":"1","resultStr":"{\"title\":\"Area and power-efficient variable-length fast Fourier transform for MR-OFDM physical layer of IEEE 802.15.4-g\",\"authors\":\"Ganjikunta Ganesh Kumar, Subhendu K. Sahoo\",\"doi\":\"10.1049/iet-cdt.2018.5260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The authors present a novel 16/32/64/128-point single-path delay feedback pipeline fast Fourier transform (FFT) architecture targeting the multi-rate and multi-regional orthogonal frequency division multiplexing (MR-OFDM) physical layer of IEEE 802.15.4-g. The proposed FFT architecture employs a mixed-radix algorithm to significantly reduce the number of complex multipliers. It utilises a configurable complex constant multiplier structure instead of a fixed constant multiplier to efficiently conduct , , and twiddle factor multiplication. A hardware-sharing mechanism has also been formulated to reduce the memory space requirements of the proposed 16/32/64/128-point FFT computation scheme. The proposed design is implemented in Xilinx Virtex-5 and Altera's field-programmable gate array devices. For the computation of 128-point FFT, the proposed mixed-radix FFT architecture significantly reduces the hardware cost in comparison with existing FFT architecture. The proposed FFT architecture is also implemented by adopting the 90 nm complementary metal-oxide-semiconductor technology with a supply voltage of 1 V. Post-synthesis results reveal that the design is efficient in terms of gate count and power consumption, compared to earlier reported designs. The proposed variable-length FFT architecture gate count is 22.3K and consumes 3.832 mW, while the word-length is 12-bits and can be efficiently useful for the IEEE 802.15.4-g standard.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 5\",\"pages\":\"193-200\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5260\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5260\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5260","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Area and power-efficient variable-length fast Fourier transform for MR-OFDM physical layer of IEEE 802.15.4-g
The authors present a novel 16/32/64/128-point single-path delay feedback pipeline fast Fourier transform (FFT) architecture targeting the multi-rate and multi-regional orthogonal frequency division multiplexing (MR-OFDM) physical layer of IEEE 802.15.4-g. The proposed FFT architecture employs a mixed-radix algorithm to significantly reduce the number of complex multipliers. It utilises a configurable complex constant multiplier structure instead of a fixed constant multiplier to efficiently conduct , , and twiddle factor multiplication. A hardware-sharing mechanism has also been formulated to reduce the memory space requirements of the proposed 16/32/64/128-point FFT computation scheme. The proposed design is implemented in Xilinx Virtex-5 and Altera's field-programmable gate array devices. For the computation of 128-point FFT, the proposed mixed-radix FFT architecture significantly reduces the hardware cost in comparison with existing FFT architecture. The proposed FFT architecture is also implemented by adopting the 90 nm complementary metal-oxide-semiconductor technology with a supply voltage of 1 V. Post-synthesis results reveal that the design is efficient in terms of gate count and power consumption, compared to earlier reported designs. The proposed variable-length FFT architecture gate count is 22.3K and consumes 3.832 mW, while the word-length is 12-bits and can be efficiently useful for the IEEE 802.15.4-g standard.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.