求助PDF
{"title":"关于二分双正则保持架、块设计与广义多边形之间的关系","authors":"Gabriela Araujo-Pardo, Robert Jajcay, Alejandra Ramos-Rivera, Tamás Szőnyi","doi":"10.1002/jcd.21836","DOIUrl":null,"url":null,"abstract":"<p>A <i>bipartite biregular</i> <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-graph <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> is a bipartite graph of even girth <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math> having the degree set <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\{m,n\\}$</annotation>\n </semantics></math> and satisfying the additional property that the vertices in the same partite set have the same degree. An <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-<i>bipartite biregular cage</i> is a bipartite biregular <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-graph of minimum order. In their 2019 paper, Filipovski, Ramos-Rivera, and Jajcay present lower bounds on the orders of bipartite biregular <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-graphs, and call the graphs that attain these bounds <i>bipartite biregular Moore cages</i>. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well-known classical results relating the existence of <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-regular Moore graphs of even girths <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>8</mn>\n </mrow>\n <annotation> $g=6,8$</annotation>\n </semantics></math>, and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $S(2,k,v)$</annotation>\n </semantics></math>-Steiner system yields the existence of a bipartite biregular <math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>v</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n <mo>;</mo>\n <mn>6</mn>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left(k,\\frac{v-1}{k-1};6\\right)$</annotation>\n </semantics></math>-cage, and, vice versa, the existence of a bipartite biregular <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n;6)$</annotation>\n </semantics></math>-cage whose order is equal to one of our lower bounds yields the existence of an <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>n</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $S(2,k,1+n(k-1))$</annotation>\n </semantics></math>-Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(3,n;6)$</annotation>\n </semantics></math>-bipartite biregular cages for all integers <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $n\\ge 4$</annotation>\n </semantics></math>. Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>8</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n+1,{n}^{2}+1;8)$</annotation>\n </semantics></math>-, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>8</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({n}^{2}+1,{n}^{3}+1;8)$</annotation>\n </semantics></math>-, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mo>;</mo>\n <mn>8</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n,n+2;8)$</annotation>\n </semantics></math>-, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>12</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n+1,{n}^{3}+1;12)$</annotation>\n </semantics></math>- and <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>16</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n+1,{n}^{2}+1;16)$</annotation>\n </semantics></math>-bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 7","pages":"479-496"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a relation between bipartite biregular cages, block designs and generalized polygons\",\"authors\":\"Gabriela Araujo-Pardo, Robert Jajcay, Alejandra Ramos-Rivera, Tamás Szőnyi\",\"doi\":\"10.1002/jcd.21836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>bipartite biregular</i> <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-graph <math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> is a bipartite graph of even girth <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n </mrow>\\n <annotation> $g$</annotation>\\n </semantics></math> having the degree set <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{m,n\\\\}$</annotation>\\n </semantics></math> and satisfying the additional property that the vertices in the same partite set have the same degree. An <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-<i>bipartite biregular cage</i> is a bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-graph of minimum order. In their 2019 paper, Filipovski, Ramos-Rivera, and Jajcay present lower bounds on the orders of bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-graphs, and call the graphs that attain these bounds <i>bipartite biregular Moore cages</i>. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well-known classical results relating the existence of <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-regular Moore graphs of even girths <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation> $g=6,8$</annotation>\\n </semantics></math>, and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $S(2,k,v)$</annotation>\\n </semantics></math>-Steiner system yields the existence of a bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mi>v</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n <mo>;</mo>\\n <mn>6</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left(k,\\\\frac{v-1}{k-1};6\\\\right)$</annotation>\\n </semantics></math>-cage, and, vice versa, the existence of a bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mn>6</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(k,n;6)$</annotation>\\n </semantics></math>-cage whose order is equal to one of our lower bounds yields the existence of an <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>n</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $S(2,k,1+n(k-1))$</annotation>\\n </semantics></math>-Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mn>6</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(3,n;6)$</annotation>\\n </semantics></math>-bipartite biregular cages for all integers <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $n\\\\ge 4$</annotation>\\n </semantics></math>. Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>8</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n+1,{n}^{2}+1;8)$</annotation>\\n </semantics></math>-, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>8</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $({n}^{2}+1,{n}^{3}+1;8)$</annotation>\\n </semantics></math>-, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mo>;</mo>\\n <mn>8</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n,n+2;8)$</annotation>\\n </semantics></math>-, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>12</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n+1,{n}^{3}+1;12)$</annotation>\\n </semantics></math>- and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>16</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n+1,{n}^{2}+1;16)$</annotation>\\n </semantics></math>-bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"30 7\",\"pages\":\"479-496\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21836\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21836","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
引用
批量引用
On a relation between bipartite biregular cages, block designs and generalized polygons
A bipartite biregular
(
m
,
n
;
g
)
$(m,n;g)$
-graph
Γ
${\rm{\Gamma }}$
is a bipartite graph of even girth
g
$g$
having the degree set
{
m
,
n
}
$\{m,n\}$
and satisfying the additional property that the vertices in the same partite set have the same degree. An
(
m
,
n
;
g
)
$(m,n;g)$
-bipartite biregular cage is a bipartite biregular
(
m
,
n
;
g
)
$(m,n;g)$
-graph of minimum order. In their 2019 paper, Filipovski, Ramos-Rivera, and Jajcay present lower bounds on the orders of bipartite biregular
(
m
,
n
;
g
)
$(m,n;g)$
-graphs, and call the graphs that attain these bounds bipartite biregular Moore cages . In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well-known classical results relating the existence of
k
$k$
-regular Moore graphs of even girths
g
=
6
,
8
$g=6,8$
, and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an
S
(
2
,
k
,
v
)
$S(2,k,v)$
-Steiner system yields the existence of a bipartite biregular
k
,
v
−
1
k
−
1
;
6
$\left(k,\frac{v-1}{k-1};6\right)$
-cage, and, vice versa, the existence of a bipartite biregular
(
k
,
n
;
6
)
$(k,n;6)$
-cage whose order is equal to one of our lower bounds yields the existence of an
S
(
2
,
k
,
1
+
n
(
k
−
1
)
)
$S(2,k,1+n(k-1))$
-Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of
(
3
,
n
;
6
)
$(3,n;6)$
-bipartite biregular cages for all integers
n
≥
4
$n\ge 4$
. Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of
(
n
+
1
,
n
2
+
1
;
8
)
$(n+1,{n}^{2}+1;8)$
-,
(
n
2
+
1
,
n
3
+
1
;
8
)
$({n}^{2}+1,{n}^{3}+1;8)$
-,
(
n
,
n
+
2
;
8
)
$(n,n+2;8)$
-,
(
n
+
1
,
n
3
+
1
;
12
)
$(n+1,{n}^{3}+1;12)$
- and
(
n
+
1
,
n
2
+
1
;
16
)
$(n+1,{n}^{2}+1;16)$
-bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.