Miguel Martin-Salgado, Ane Ochoa-Echeverría, Isabel Mérida
{"title":"二酰甘油激酶:免疫疗法的未来展望。","authors":"Miguel Martin-Salgado, Ane Ochoa-Echeverría, Isabel Mérida","doi":"10.1016/j.jbior.2023.100999","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 100999"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492623000453/pdfft?md5=f6694ed8725f58691594eb04dca8f19b&pid=1-s2.0-S2212492623000453-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Diacylglycerol kinases: A look into the future of immunotherapy\",\"authors\":\"Miguel Martin-Salgado, Ane Ochoa-Echeverría, Isabel Mérida\",\"doi\":\"10.1016/j.jbior.2023.100999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.</p></div>\",\"PeriodicalId\":7214,\"journal\":{\"name\":\"Advances in biological regulation\",\"volume\":\"91 \",\"pages\":\"Article 100999\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212492623000453/pdfft?md5=f6694ed8725f58691594eb04dca8f19b&pid=1-s2.0-S2212492623000453-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biological regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212492623000453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212492623000453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Diacylglycerol kinases: A look into the future of immunotherapy
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.