优化从牛精子中分离总RNA,增强精子头裂解。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-01 Epub Date: 2023-11-10 DOI:10.1139/bcb-2023-0231
Saurabh Tiwari, Abdallah Shahat, John Kastelic, Nehal Thakor, Jacob Thundathil
{"title":"优化从牛精子中分离总RNA,增强精子头裂解。","authors":"Saurabh Tiwari, Abdallah Shahat, John Kastelic, Nehal Thakor, Jacob Thundathil","doi":"10.1139/bcb-2023-0231","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence of sperm RNA's role in fertilization and embryonic development has provided impetus for its isolation and thorough characterization. Sperm are considered tough-to-lyse cells due to the compact condensed DNA in sperm heads. Lack of consensus among bovine sperm RNA isolation protocols introduces experimental variability in transcriptome studies. Here, we describe an optimized method for total RNA isolation from bovine sperm using the TRIzol reagent. This study critically investigated the effects of various lysis conditions on sperm RNA isolation. Sperm suspended in TRIzol were subjected to a combination of mechanical treatments (sonication and passage through a 30G needle and syringe) and chemical treatments (supplementation with reducing agents 1,4-dithiothreitol and tris(2-carboxyethyl) phosphine hydrochloride (TCEP)). Microscopic evaluation of sperm lysis confirmed preferential sperm tail versus sperm head lysis. Interestingly, only TCEP-supplemented TRIzol (both mechanical treatments) had progressive sperm head lysis and consistently yielded total sperm RNA. Furthermore, RNA integrity was confirmed based on the electrophoresis profile and an absence of genomic DNA and somatic cells (e.g., epithelial cells, spermatids, etc.) with RT-qPCR. Our findings highlighted the importance of sperm lysis, specifically of the sperm head using TCEP with mechanical treatment, in total RNA isolation and presented a bovine-specific sperm RNA isolation method to reduce experimental variabilities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized total RNA isolation from bovine sperm with enhanced sperm head lysis.\",\"authors\":\"Saurabh Tiwari, Abdallah Shahat, John Kastelic, Nehal Thakor, Jacob Thundathil\",\"doi\":\"10.1139/bcb-2023-0231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence of sperm RNA's role in fertilization and embryonic development has provided impetus for its isolation and thorough characterization. Sperm are considered tough-to-lyse cells due to the compact condensed DNA in sperm heads. Lack of consensus among bovine sperm RNA isolation protocols introduces experimental variability in transcriptome studies. Here, we describe an optimized method for total RNA isolation from bovine sperm using the TRIzol reagent. This study critically investigated the effects of various lysis conditions on sperm RNA isolation. Sperm suspended in TRIzol were subjected to a combination of mechanical treatments (sonication and passage through a 30G needle and syringe) and chemical treatments (supplementation with reducing agents 1,4-dithiothreitol and tris(2-carboxyethyl) phosphine hydrochloride (TCEP)). Microscopic evaluation of sperm lysis confirmed preferential sperm tail versus sperm head lysis. Interestingly, only TCEP-supplemented TRIzol (both mechanical treatments) had progressive sperm head lysis and consistently yielded total sperm RNA. Furthermore, RNA integrity was confirmed based on the electrophoresis profile and an absence of genomic DNA and somatic cells (e.g., epithelial cells, spermatids, etc.) with RT-qPCR. Our findings highlighted the importance of sperm lysis, specifically of the sperm head using TCEP with mechanical treatment, in total RNA isolation and presented a bovine-specific sperm RNA isolation method to reduce experimental variabilities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据表明精子RNA在受精和胚胎发育中的作用,为其分离和彻底表征提供了动力。精子被认为很难裂解细胞,因为精子头部的DNA紧密凝聚。牛精子RNA分离方案之间缺乏共识,导致转录组研究中存在实验变异性。在此,我们描述了一种使用TRIzol试剂从牛精子中分离总RNA的优化方法。本研究主要研究了不同裂解条件对精子RNA分离的影响。将悬浮在TRIzol中的精子进行机械处理(超声处理和通过30G针头和注射器)和化学处理(补充还原剂DTT(1,4-二硫苏糖醇)和TCEP[Tris(2-羧乙基)膦盐酸盐]的组合。精子裂解的显微镜评估证实,精子尾部裂解优先于精子头部裂解。有趣的是,只有TCEP补充的TRIzol(两种机械治疗)具有进行性精子头溶解,并始终产生总精子RNA。此外,基于电泳图谱和RT-qPCR不存在基因组DNA和体细胞(例如上皮细胞、精子细胞等),确认了RNA的完整性。我们的研究结果强调了精子裂解的重要性,特别是使用TCEP和机械处理的精子头在总RNA分离中的重要性,并提出了一种牛特异性精子RNA分离方法来减少实验的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized total RNA isolation from bovine sperm with enhanced sperm head lysis.

Increasing evidence of sperm RNA's role in fertilization and embryonic development has provided impetus for its isolation and thorough characterization. Sperm are considered tough-to-lyse cells due to the compact condensed DNA in sperm heads. Lack of consensus among bovine sperm RNA isolation protocols introduces experimental variability in transcriptome studies. Here, we describe an optimized method for total RNA isolation from bovine sperm using the TRIzol reagent. This study critically investigated the effects of various lysis conditions on sperm RNA isolation. Sperm suspended in TRIzol were subjected to a combination of mechanical treatments (sonication and passage through a 30G needle and syringe) and chemical treatments (supplementation with reducing agents 1,4-dithiothreitol and tris(2-carboxyethyl) phosphine hydrochloride (TCEP)). Microscopic evaluation of sperm lysis confirmed preferential sperm tail versus sperm head lysis. Interestingly, only TCEP-supplemented TRIzol (both mechanical treatments) had progressive sperm head lysis and consistently yielded total sperm RNA. Furthermore, RNA integrity was confirmed based on the electrophoresis profile and an absence of genomic DNA and somatic cells (e.g., epithelial cells, spermatids, etc.) with RT-qPCR. Our findings highlighted the importance of sperm lysis, specifically of the sperm head using TCEP with mechanical treatment, in total RNA isolation and presented a bovine-specific sperm RNA isolation method to reduce experimental variabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1