{"title":"触觉感知相似性的模糊评价方法。","authors":"Yan Zhang;Riting Xia;Xiaoying Sun","doi":"10.1109/TOH.2023.3331032","DOIUrl":null,"url":null,"abstract":"Tactile rendering in virtual interactive scenes plays an important role in improving the quality of user experience. The subjective rating is currently the mainstream measurement to assess haptic rendering realism, which ignores various subjective and objective uncertainties in the evaluation process and also neglects the mutual influence among tactile renderings. In this paper, we extend the existing subjective evaluation and systematically propose a fuzzy evaluation method of haptic rendering realism. Hierarchical fuzzy scoring based on confidence interval is introduced to reduce the difficulty of expressing tactile feeling with deterministic rating. After the fuzzy statistics based on the membership function, we further use close-degree and transitive closure to calculate the fuzzy equivalence matrix between different tactile renderings. Fuzzy clustering is carried out to complete the comprehensive evaluation in the case of multiple indicators. Five tactile objects are used to simulate various situations of tactile rendering. The experimental results of haptic perceptual similarity evaluation show the existence of fuzziness in the subjective evaluation and verify the feasibility of the proposed method applied to multi-indicator evaluation. We also conclude that the proposed method outperforms the existing methods in terms of time cost and labor cost.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"16 4","pages":"826-835"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Evaluation Method for Haptic Perceptual Similarity\",\"authors\":\"Yan Zhang;Riting Xia;Xiaoying Sun\",\"doi\":\"10.1109/TOH.2023.3331032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile rendering in virtual interactive scenes plays an important role in improving the quality of user experience. The subjective rating is currently the mainstream measurement to assess haptic rendering realism, which ignores various subjective and objective uncertainties in the evaluation process and also neglects the mutual influence among tactile renderings. In this paper, we extend the existing subjective evaluation and systematically propose a fuzzy evaluation method of haptic rendering realism. Hierarchical fuzzy scoring based on confidence interval is introduced to reduce the difficulty of expressing tactile feeling with deterministic rating. After the fuzzy statistics based on the membership function, we further use close-degree and transitive closure to calculate the fuzzy equivalence matrix between different tactile renderings. Fuzzy clustering is carried out to complete the comprehensive evaluation in the case of multiple indicators. Five tactile objects are used to simulate various situations of tactile rendering. The experimental results of haptic perceptual similarity evaluation show the existence of fuzziness in the subjective evaluation and verify the feasibility of the proposed method applied to multi-indicator evaluation. We also conclude that the proposed method outperforms the existing methods in terms of time cost and labor cost.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"16 4\",\"pages\":\"826-835\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10314788/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10314788/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Fuzzy Evaluation Method for Haptic Perceptual Similarity
Tactile rendering in virtual interactive scenes plays an important role in improving the quality of user experience. The subjective rating is currently the mainstream measurement to assess haptic rendering realism, which ignores various subjective and objective uncertainties in the evaluation process and also neglects the mutual influence among tactile renderings. In this paper, we extend the existing subjective evaluation and systematically propose a fuzzy evaluation method of haptic rendering realism. Hierarchical fuzzy scoring based on confidence interval is introduced to reduce the difficulty of expressing tactile feeling with deterministic rating. After the fuzzy statistics based on the membership function, we further use close-degree and transitive closure to calculate the fuzzy equivalence matrix between different tactile renderings. Fuzzy clustering is carried out to complete the comprehensive evaluation in the case of multiple indicators. Five tactile objects are used to simulate various situations of tactile rendering. The experimental results of haptic perceptual similarity evaluation show the existence of fuzziness in the subjective evaluation and verify the feasibility of the proposed method applied to multi-indicator evaluation. We also conclude that the proposed method outperforms the existing methods in terms of time cost and labor cost.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.